The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a ...The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.展开更多
The relationships between the microstructure, the composition, the friction temperature and the form of a new kind of friction material which is a glass fibre resin friction materials (GFRF) are studied through a seri...The relationships between the microstructure, the composition, the friction temperature and the form of a new kind of friction material which is a glass fibre resin friction materials (GFRF) are studied through a series of tests on machine as EPMA, STM, DTG-DTA,an optical microscope and a friction test machine. The tests show that the rising rate in temperature and the heat conductivity of GFRF are lower than that of asbestos friction material. In GFRF, the heat-decline is slowed down or even eliminated. the distribution of heat- stress is improved and the life span is extended. Raising the temperature of resin resolution and enhancing the stickness between resin and glass fibre are the two important procedures to improve the friction and wear performance of GFRF.A discription about the friction and wear mechanism of GFRF is given in this paper.展开更多
An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting...An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting behavior of granulated powders was investigated. Results show that the injection position has a strong effect on the melting behavior of alkali-free glass raw material. With the increase in injection distance, the vitrification, decomposition, and particle shrinkage of initial powders are improved. Longer injection distance causes much energy to transfer to particles due to a longer residence time of powder in the high temperature zone. The high vitrification and decomposition degrees indicate that the new in-flight melting technology with 12-phase AC arc can substantially reduce the melting and refining time for glass production.展开更多
The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with...The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is il- lustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical inter- action of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pic- torially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.展开更多
The new production models that aim at both the improvement of the various new processes and the existing ones,create new markets with innovative business methods and introduce sufficient technological solutions for th...The new production models that aim at both the improvement of the various new processes and the existing ones,create new markets with innovative business methods and introduce sufficient technological solutions for the conversion and enhancement of electricity in construction.The objectives are of innovative glass technologies in the new building process with lean manufacturing,and robotic devices,follow criteria according to the needs of energy efficiency,energy saving,usability,reliability,thermo-hygrometric well-being,appearance,visual,acoustic well-being,reduction costs,safety of building systems and productivity.We highlight the strategic application of integrated design instrumentation and methodologies,digital fabrication,for intelligent,dynamic,adaptive and LED enclosures,BIPV(building integrated photovoltaics)with intelligent glass facades integrated with photovoltaic panels,with hybrid hydrogen systems and integration of RES(renewable energy sources)on the network,and their reliability.The criteria are for the use of clean energy with renewable resources.The challenge is new building models,with an increase in scientific support,in the application of intelligent glass technologies and in the efficient use of the various solutions that aim to reduce energy needs,with passive use of clean energy from RES.展开更多
Phlogopite glass ceramics can be made by powder sintering technology. This paper now studies the factors which affect properties of the sintered phlogopite glass ceramic by X-ray diffraction in qualitative and quanti...Phlogopite glass ceramics can be made by powder sintering technology. This paper now studies the factors which affect properties of the sintered phlogopite glass ceramic by X-ray diffraction in qualitative and quantitative way, and discusses the method improved the machinable properties of phlogopite glass ceramic. (Author abstract)展开更多
The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides ...The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides low power, low cost and small volume,therefore,it can increase the practicability of the system.In this investigation,the pH value was detected by the SnO_2/ITO glass-based pH sensor.During the signal progress,the detected signal was transferred to the microchip PIC18.After that,the microchip was able to communicate with PC by the Bluetooth.Moreover,the microchip can diagnose the sensing signal and sends the warning signal by alert function.In addition,the part of PC has the ability to record the information,builds the database for analyzing the pH values,and provides a better long-distance monitoring system.展开更多
文摘The architecture of footbridge design takes the form of a number of submissions from leading architects and engineers, each setting out their views on bridge design--present and future. It looks at the functions of a bridge, defining purpose of place and context, the spirit of creativity and the reasoned progression of an idea. It also explores the exploitation of materials technology and construction innovation and the tension between lightness and mass and between sculpture and scale. Present parameters of tempered and laminated glass create possibility of modern architecture of footbridges which are being full of transparency and light reflex effects. Four projects, using glass panels designed by Santiago Calatrava, have been presented in this paper. GFRP (glass fiber retrofit polymer) makes new horizon in material technology, helps to enrich new conception of structure with longer durability, low weight of deck and new creation of architecture line. The paper has described a few results of FEM (finite element method) analysis of footbridge with modular bridge GFRP deck system. The footbridge was excited by impact and human-induced vibrations. Composite material consists of glass fibers and polymer matrix is a promising alternative against traditional materials. New architecture and modern material engineering are looking for fresh possibilities of form and shape of structure, long durability and extraordinary technical parameters of building elements.
文摘The relationships between the microstructure, the composition, the friction temperature and the form of a new kind of friction material which is a glass fibre resin friction materials (GFRF) are studied through a series of tests on machine as EPMA, STM, DTG-DTA,an optical microscope and a friction test machine. The tests show that the rising rate in temperature and the heat conductivity of GFRF are lower than that of asbestos friction material. In GFRF, the heat-decline is slowed down or even eliminated. the distribution of heat- stress is improved and the life span is extended. Raising the temperature of resin resolution and enhancing the stickness between resin and glass fibre are the two important procedures to improve the friction and wear performance of GFRF.A discription about the friction and wear mechanism of GFRF is given in this paper.
基金supported by the New Energy and Industrial Technology Development Organization of Japan and the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘An innovative in-flight glass melting technology with a multi-phase AC arc plasma was developed to save energy and reduce emissions for the glass industry. The effect of the injection position on the in-flight melting behavior of granulated powders was investigated. Results show that the injection position has a strong effect on the melting behavior of alkali-free glass raw material. With the increase in injection distance, the vitrification, decomposition, and particle shrinkage of initial powders are improved. Longer injection distance causes much energy to transfer to particles due to a longer residence time of powder in the high temperature zone. The high vitrification and decomposition degrees indicate that the new in-flight melting technology with 12-phase AC arc can substantially reduce the melting and refining time for glass production.
基金This work is supported by (1) National Natural Science Foundation of China (No.50071005 50431030 and 50171006+1 种基金 (2) Hi-techResearch and Development Program of China (No.2001AA331010) (3) Major State Basic Research Development Program of China(973) (G2000 67201-3) and Major Program of Science and Technology of Beijing (H020420030320).
文摘The atomic configuration of chemical short-range order (CSRO) for the Zr-base metallic glasses was investigated by using nano-diffraction and high resolution transmission electronic microscopy (HRTEM) technology with a beam size of 0.5 nm. It is il- lustrated that the pattern of atomic configuration of CSRO might have various compound counterparts because of the chemical inter- action of bonding atoms. Some atomic configuration of MCSRO is similar to the icosahedral structure with 10-fold symmetry of very weak spots. In deed, the nano-beam technology could clearly detect the evolution of atomic configuration in nanometer scale during the transformation from the metallic melt to the primary crystallization. The local atomic configuration of CSRO is also investigated by molecular dynamics simulation (MD) for the Zr2Ni compound in a wider temperature range. The CSRO in the melt could be pic- torially demonstrated as distorted coordination polyhedron of the compound structure and/or the structure similar to cubo-octahedron analogs. The MD simulation illustrates that the atomic packing of long-range order disappears just above the melting point, but the chemical interaction of bonding atoms still exists that leads to form the various CSRO with the atomic configuration similar to stable or metastable unit cell of Zr2Ni compound. The icosahedral polyhedron became more abundance as the overheating temperature was raised.
文摘The new production models that aim at both the improvement of the various new processes and the existing ones,create new markets with innovative business methods and introduce sufficient technological solutions for the conversion and enhancement of electricity in construction.The objectives are of innovative glass technologies in the new building process with lean manufacturing,and robotic devices,follow criteria according to the needs of energy efficiency,energy saving,usability,reliability,thermo-hygrometric well-being,appearance,visual,acoustic well-being,reduction costs,safety of building systems and productivity.We highlight the strategic application of integrated design instrumentation and methodologies,digital fabrication,for intelligent,dynamic,adaptive and LED enclosures,BIPV(building integrated photovoltaics)with intelligent glass facades integrated with photovoltaic panels,with hybrid hydrogen systems and integration of RES(renewable energy sources)on the network,and their reliability.The criteria are for the use of clean energy with renewable resources.The challenge is new building models,with an increase in scientific support,in the application of intelligent glass technologies and in the efficient use of the various solutions that aim to reduce energy needs,with passive use of clean energy from RES.
文摘Phlogopite glass ceramics can be made by powder sintering technology. This paper now studies the factors which affect properties of the sintered phlogopite glass ceramic by X-ray diffraction in qualitative and quantitative way, and discusses the method improved the machinable properties of phlogopite glass ceramic. (Author abstract)
文摘The application of Bluetooth on the pH sensor was accomplished.Based on the experimental results,Bluetooth technology was used to measure pH values without limiting the distance.Moreover,Biuetooth technology provides low power, low cost and small volume,therefore,it can increase the practicability of the system.In this investigation,the pH value was detected by the SnO_2/ITO glass-based pH sensor.During the signal progress,the detected signal was transferred to the microchip PIC18.After that,the microchip was able to communicate with PC by the Bluetooth.Moreover,the microchip can diagnose the sensing signal and sends the warning signal by alert function.In addition,the part of PC has the ability to record the information,builds the database for analyzing the pH values,and provides a better long-distance monitoring system.