期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications 被引量:1
1
作者 Shu-shen Wang Yun-liang Wang +2 位作者 Yi-dong Wu Tan Wang Xi-dong Hui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期648-653,共6页
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties... Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications. 展开更多
关键词 metallic glasses biomedical materials mechanical properties corrosion resistance zirconium content niobium addition
下载PDF
Effect of yttrium addition on flow behavior of Cu-Zr-Al bulk metallic glass in the supercooled liquid region 被引量:3
2
作者 杨珂 范新会 +3 位作者 李炳 李艳红 王鑫 徐璇璇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第10期1035-1041,共7页
The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the unia... The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming. 展开更多
关键词 bulk metallic glass yttrium addition flow behavior deformation map rare earths
原文传递
Effects of B addition on glass forming ability and thermal behavior of FePC-based bulk metallic glasses 被引量:2
3
作者 Sheng-feng Guo Chen Su +4 位作者 Jia-xiang Cui Jing Li Guan-nan Li Meng Zhang Ning Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第4期442-447,共6页
The FePC-based bulk metallic glasses(BMGs)have been demonstrated to possess high plasticity and good soft magnetic properties.However,the relatively poor glass forming ability(GFA)and thermal stabilities limited t... The FePC-based bulk metallic glasses(BMGs)have been demonstrated to possess high plasticity and good soft magnetic properties.However,the relatively poor glass forming ability(GFA)and thermal stabilities limited their application in industries.The effects of microalloying with B in FePC-based BMGs on the GFA and thermal behaviors were systematically investigated.It was found that a small amount of B addition can dramatically enhance the GFA of FePC-based BMGs,which in turn leads to the critical maximum diameter up to 2 mm for full glass formation even using low cost raw materials.The underlying mechanism of the enhancement of GFA from the competing crystalline phase with amorphous phase,the average thermal expansion coefficient and dynamic viscosity were discussed in detail. 展开更多
关键词 Fe-based bulk metallic glass glass forming ability Thermal behavior Thermal expansion coefficient Dynamic viscosity B addition
原文传递
Bioactive glass sol as a dual function additive for chitosan-alginate hybrid scaffold 被引量:2
4
作者 Huihui Ren Yang Cui +1 位作者 Ailing Li Dong Qiu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期395-398,共4页
Bioactive glass-chitosan-alginate hybrid scaffolds (BG-C-A scaffolds) were fabricated using BG sol as a dual function additive, which behaves as both bioactive inorganic phase to confer the bioactivity and cross-lin... Bioactive glass-chitosan-alginate hybrid scaffolds (BG-C-A scaffolds) were fabricated using BG sol as a dual function additive, which behaves as both bioactive inorganic phase to confer the bioactivity and cross-linker to improve the structural stability and mechanical properties. The microstructure, physicochemical and mechanical properties, in vitro bioactivity and cellular biocompatibility of the scaffolds were investigated. The results indicated that BG component was successfully incorporated into the BG-C-A scaffolds through a facile BG sol-immersing method and the original interconnected microstructure could be well preserved. The obtained BG-C-A scaffolds showed improved mechanical properties and structural stability as compared to C-A scaffolds. At the same time, they presented excellent in vitro bioactivity and cellular compatibility. All these results demonstrated that these BG-C-A scaffolds have promising potential for tissue engineering. 展开更多
关键词 Bioactive glass sol Chitosan Alginate Dual function additive Bioactivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部