The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize th...The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that...Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.展开更多
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve...Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.展开更多
Nano-silica treated with different kinds of coupling agent (KH550, A-143, A-151) was used to modify the surface condition of glass fiber, and then, the modified glass fiber/unsaturated polyester resin (UPR) compos...Nano-silica treated with different kinds of coupling agent (KH550, A-143, A-151) was used to modify the surface condition of glass fiber, and then, the modified glass fiber/unsaturated polyester resin (UPR) composites materials were prepared. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and impact test were used to characterize the composite materials' structure and properties. The morphology of composite materials shows that the adhesion between nano-silica and glass fiber is improved when silane coupling agent is added in. The DMA and impact test results show that silane coupling agent (especially KH550 and A-151) could effectively improve the composite's mechanical properties. When the dose of KH550 was 0.1% (m : m), the storage modulus and impact strength reached the maximum.展开更多
Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acryla...Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).展开更多
文摘The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.
文摘Synthetic reinforced composites affect the environment adversely and have become a global concern, causing increased natural composite demand for sustainability and cost effectiveness. Glass is a popular material that is highly consumed in reinforced composites for its superior mechanical strength. As opposed to that, flax obtained from flax stalks can be used as an alternative reinforcing material with synthetic fibers to minimize manmade fiber consumption. Hence, this research work addresses a few flax/glass-reinforced hybrid composites by using a thermoset polyester matrix. Here, six categories of samples are made, like neat flax, neat glass, and flax/glass fabric reinforced hybrid composite, followed by different stacking layer sequences and hand layout techniques during processing. Afterwards, the mechanical behavior, thermal stability, morphological behavior, and water absorption of hybrid samples were investigated. Among the developed samples, neat glass (NG) composite exhibits superior mechanical properties, while neat flax (NF) shows the lowest result. It is apparent that the mechanical properties and thermal stability of hybrid samples are in between NF and NG because, by adding glass with flax fabric, the strength of hybrid samples is increased. Moreover, it is noticeable that, due to multiple stacking layers of flax and glass, hybrid 3 and hybrid 4 show better strength than consecutive single stacking layers in hybrid 1 and hybrid 2. Among all hybrid composites, the H4 shows comparatively better mechanical and thermal properties due to having the glass layers on the outermost surface. In summary, this research work demonstrated the feasibility of flax fabric with glass fabric as a reinforced hybrid composite that can be used in automobile inner bodies, household furnishing, and home interior decoration.
文摘Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.
基金Supported by the National Natural Science Foundation of of China(J1210061)
文摘Nano-silica treated with different kinds of coupling agent (KH550, A-143, A-151) was used to modify the surface condition of glass fiber, and then, the modified glass fiber/unsaturated polyester resin (UPR) composites materials were prepared. Scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and impact test were used to characterize the composite materials' structure and properties. The morphology of composite materials shows that the adhesion between nano-silica and glass fiber is improved when silane coupling agent is added in. The DMA and impact test results show that silane coupling agent (especially KH550 and A-151) could effectively improve the composite's mechanical properties. When the dose of KH550 was 0.1% (m : m), the storage modulus and impact strength reached the maximum.
文摘Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).