The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning...The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning Electron Microscope) . The surface morphology of glass fibres and the hydration products in the vicinity of the interfaces were observed. Chemical element (Zr, Ca and Si) distributions over the ITZ thickness were determined by line-scanning with EPXM. The results show that a low-density transition zone existed in the vicinity of glass fibres . The shape of the fibre-cement ITZ was non-symmetrical and its thickness was variable . In the present study, the width of the zone ranged from 1 - 5 μm. Locally, it came to 10μm. Occasionally , some hydration products with high alkalinity were embedded inside the ITZ, and attached on the glass surface , making the ITZ denser and causing local glass to corrode. The test results are helpful for the further understanding of the GRC degradation .展开更多
基金Funded by a Chinese-Dutch Cooperation Project "Concrete Composite Technology
文摘The microstructure of ITZ (Interfacial Transition Zone) in single glass fibre-cement was investigated by SEM ( Scanning Electron Microscope), EPXM ( Electron Probe X-ray Microanalyzer) and ESEM (Environmental Scanning Electron Microscope) . The surface morphology of glass fibres and the hydration products in the vicinity of the interfaces were observed. Chemical element (Zr, Ca and Si) distributions over the ITZ thickness were determined by line-scanning with EPXM. The results show that a low-density transition zone existed in the vicinity of glass fibres . The shape of the fibre-cement ITZ was non-symmetrical and its thickness was variable . In the present study, the width of the zone ranged from 1 - 5 μm. Locally, it came to 10μm. Occasionally , some hydration products with high alkalinity were embedded inside the ITZ, and attached on the glass surface , making the ITZ denser and causing local glass to corrode. The test results are helpful for the further understanding of the GRC degradation .