With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of ...Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.展开更多
Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for ve...Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.展开更多
To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrice...To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...展开更多
Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course...Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.展开更多
Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosil...Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
文摘Epoxy glass fiber laminate composite (PMCs) are finding ever increasing applications in aerospace and automobile industries due to its high strength to weight ratio and resistance to aqueous environment. Additions of particulate reinforcements in the polymer matrix are reported to improve the Interlaminar Shear Strength and Interlaminar Fracture Toughness of the composites. In the present investigation, epoxy glass fiber laminate composites were processed using hand layup and vacuum bagging technique. The particulate reinforcement precipitator fly ash (25 - 45 μm) was added in the epoxy matrix by mechanical mixing up to 10 wt%. The effects of fly ash reinforcement on the mechanical properties and Interlaminar Fracture Toughness were studied before and after exposure to aqueous fog in a salt fog chamber at 45°C. In unexposed condition Mode I interlaminar fracture toughness of epoxy glass fiber laminate composite improved by the addition of fly ash reinforcement 10% (By weight) by 49.43% and when it was subjected to aqueous fog for 10 days the interlaminar fracture toughness improved 58.42%. Exposure to aqueous fog for 10 days causes plasticization of resin matrix and weakening of fiber/matrix interface results in improvement in interlaminar fracture toughness. The fracture surfaces were analyzed using scanning electron microscopy.
文摘Glass Fiber Reinforced Polymeric (GFRP)</span><span style="font-family:""> </span><span style="font-family:Verdana;">Composites are most commonly used as bumpers for vehicles, electrical equipment panels, and medical devices enclosures. These materials are also widely used for structural applications in aerospace, automotive, and in providing alternatives to traditional metallic materials. The paper fabricated epoxy and polyester resin composites by using silicon carbide in various proportions along with GFRP. The hand lay-up technique was used to fabricate the laminates. To determine the properties of fabricated composites, </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">tensile, impact, and flexural tests were conducted. This method of fabrication was very simple and cost-effective. Their mechan</span><span style="font-family:Verdana;">ical properties like yield strength, yield strain, Young’s modulus, flexural</span><span style="font-family:Verdana;"> mod</span><span style="font-family:Verdana;">ulus, and impact energy </span></span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> investigated. The mechanical properties of the</span><span style="font-family:""><span style="font-family:Verdana;"> GFRP composites were also compared with the fiber volume fraction. The fiber volume fraction plays a major role in the mechanical properties of GFRP composites. Young’s modulus and tensile strength of fabricated composites </span><span style="font-family:Verdana;">were modelled and compared with measured values. The results show that</span><span style="font-family:Verdana;"> composites </span><span style="font-family:Verdana;">with epoxy resin demonstrate higher strength and modulus compared to</span><span style="font-family:Verdana;"> composites with polyester resin.
文摘To research the relationship between epoxy and fiber inherent property and mechanical properties of composite,we prepared a series of composites using three kinds of high mechanical performance epoxy resins as matrices and reinforced by the same volume fraction(5%)of short carbon and glass fiber.Their mechanical properties were investigated from the perspective of chemical structure and volume shrinkage ratio of epoxy.We analyzed their tensile strength and modulus based on the mixing rule and Halpin-Tsai eq...
文摘Seven kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/epoxy composite laminates. Tensile tests were carried out to examine and compare the mechanical properties in course and wale direction of these composites. On the basis of experimental results, attempts have been made to analyze some main factors influencing stress-strain curve, ultimate tensile strength and initial elastic modulus of specimens.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51973173 and 51773169)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(No.20191C-11)+1 种基金Funuaneilal Resealuh Funds fur te Centual Univel sities(No.310201911py010)and Fund Project of Basic and Applied Basic Research in Guangdong Province of China(No.2019B1515120093).
文摘Glass fibers(GFs)/epoxy laminated composites always present weak interlaminar shear strength(ILSS)and low cross-plane thermal conductivity coefficient(λ⊥).In this work,silica-sol,synthesized from tetraethyl orthosilicate(TEOS)and KH-560 via sol-gel method,was employed to functionalize the surface of GFs(Si-GFs).Together with a spherical boron nitride(BNN-30),the thermally conductive BNN-30/Si-GFs/epoxy laminated composites were then fabricated.Results demonstrate that Si-sol is beneficial to the improvement of mechanical properties for epoxy laminated composites(especially for ILSS).The BNN-30/Si-GFs/epoxy laminated composites with 15 wt%BNN-30 fillers display the optimal comprehensive properties.In-planeλ(λ//)andλ⊥reach the maximum of 2.37 and 1.07 W.m-1.K-1,146.9%and 132.6%higher than those of SiGFs/epoxy laminated composites(λ//=0.96 W.m-1.K-1 andλ⊥=0.46 W.m-1K-1),respectively,and also about 10.8 and 4.9 times those of pure epoxy resin(λ//=λ⊥,0.22 W.m-1.K-1).And the heat-resistance index(THRI),dielectric constant(ε),dielectric loss(tanδ),breakdown strength(E0),surface resistivity(ρs)as well as volume resistivity(ρv)are 197.3℃,4.95,0.0046,22.3 kV.mm-1,1.8×1014Ω,and 2.1×1014Ω.cm,respectively.