A new microstructure model is developed for amorphous alloys,so called Cluster medel, in which the amorphous phase is thought of composing of randomly distributed ordered clusters of different sizes.Thermodynamic calc...A new microstructure model is developed for amorphous alloys,so called Cluster medel, in which the amorphous phase is thought of composing of randomly distributed ordered clusters of different sizes.Thermodynamic calculation on this model deduces a parameter describing the glass forming ability of metallic alloys:α_c=(1-2.08/Φ_m)T_g/T_m,where T_g is gass transition temperature,T_m is the melting temperature,and Φ_m is entralpy change of melting.It is believed that easy glass forming alloy systems have larger values of a_c.This new criterion of GFA not only provides the theoretical background for several GFA criteria in the literature cited,but also can predict the GFA of many alloy systems more reasonably and accurately.展开更多
A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on ...A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.展开更多
Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni ...Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni alloys were studied. The results show that the GFA of Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) is improved successfully with the Y addition. The highest GFA appeares at x=6, while the reduced glass transition temperature (Trg) is 0.5225 and the supercooled liquid region(ΔTx) is 42.06 K; the position of the main diffraction halo is different for the alloys, and the maximum of the main diffraction halo of alloys with x=0, 1, 3 corresponds to the main peaks of a metastable fcc-Mg6Ni or fcc-Mg6Ni + Ni-Y intermetallic phases, and for the alloys with x=6, 10, it corresponds to Mg-Y and Ni-Y intermetallic phases; the micro-hardness of the alloys is improved with Y additions, and the highest micro-hardness is obtained at x=6 at.%, which is 960 MPa.展开更多
The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mo...The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mold suction casting method. The main purpose of this work was to locate the optimal BMG-forming composition for the quaternary Zr Co(Cu)Al alloys and to improve the plasticity of the parent alloy. The X-ray diffractometry(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC) were used to investigate the glassy alloys structure and their glass forming ability(GFA). In addition, the compression test, microhardness, nano-indentation and scanning electron microscopy(SEM) were utilized to discuss the possible mechanisms involved in the enhanced plasticity achievement. The highest GFA among Cu-containing alloys was found for the Zr(56) Co(22) Cu6 Al(16) alloy, which was similar to that of the base alloy. Furthermore, the plasticity of the base alloy increased significantly from 3.3% to 6% for the Zr(56) Co(22) Cu)6 Al(16) BMG. The variations in the plasticity and GFA of the alloys were discussed by considering the positive heat of mixing within Cu and Co elements.展开更多
Pd81Si19 amorphous alloys were prepared by combination methods of melt spinning and B2O3 flux treatment. A compari- son between the ribbons prepared from the fluxed ingots and the non-fluxed ones has been carried out....Pd81Si19 amorphous alloys were prepared by combination methods of melt spinning and B2O3 flux treatment. A compari- son between the ribbons prepared from the fluxed ingots and the non-fluxed ones has been carried out. The result reveals that after fluxing treatment the glass transition temperature of the as-prepared glassy ribbons is reduced while the initial crystallization tem- perature is enhanced. It results in that the supercooled liquid region (defined as the difference between the initial crystallization tem- perature and the glass transition temperature) of the glassy alloy treated with fluxing technology has been increased from 31 to 42 K. This shows that fluxing technique can enhance the glass forming ability (GFA) of the binary alloy and improve the thermal stability of supercooled liquid of the glassy alloy.展开更多
The thermodynamic model of multicomponent chemical short range order (MCSRO) was established in order to evaluate the glass forming ability (GFA) of ternary alloys. Comprehensive numerical calculations using MSCRO sof...The thermodynamic model of multicomponent chemical short range order (MCSRO) was established in order to evaluate the glass forming ability (GFA) of ternary alloys. Comprehensive numerical calculations using MSCRO software were conducted to obtain the composition dependence of the MCSRO undercooling in Zr Ni Cu, Zr Si Cu and Pd Si Cu ternary systems. By the MCSRO undercooling principle, the composition range of Zr Ni Cu system with optimum GFA is determined to be 62.5 ~ 75 Zr, 5~ 20 Cu, 12.5 ~ 25 Ni ( n (Ni)/ n (Cu)=1~5). The TTT curves of Zr Ni Cu system were also calculated based on the MCSRO model. The critical cooling rates for Zr based alloy with deep MSCRO undercooling are estimated to be as low as 100?K/s, which is consistent with the practical cooling rate in the preparation of Zr based bulk metallic glass (BMG). The calculation also illustrates that the easy glass forming systems such as Pd based alloys exhibit an extraordinary deep MCSRO undercooling. It is shown that the thermodynamic model of MCSRO provides an effective method for the alloy designing of BMG.展开更多
The heredity of clusters in rapidly cooled(Zr_(50)Cu_(50))_(100-x)Al_x melts and its correlation with glass-forming ability(GFA)are studied via molecular dynamics simulations.Pair distribution function and the largest...The heredity of clusters in rapidly cooled(Zr_(50)Cu_(50))_(100-x)Al_x melts and its correlation with glass-forming ability(GFA)are studied via molecular dynamics simulations.Pair distribution function and the largest standard cluster(LSC)are adopted to characterize the local atomic structures in the(Zr_(50)Cu_(50))_(100-x)Al_(x)systems.The[12/555]icosahedra and their medium-range order(IMRO)play an important role in forming(Zr_(50)Cu_(50))_(100-x)Al_(x)metallic glasses(MGs).The fraction of[12/555],the number of IMRO,and the maximum size of IMRO in MGs increase significantly with increasing x.A tracking study further reveals that the configuration heredity of icosahedral clusters starts from supercooled liquids.No direct correlation exists between the GFA and the onset temperature of continuous or stated heredity.Instead,a larger hereditary supercooled degree of icosahedra matches with better GFA of Al-doped Zr_(50)Cu_(50)alloys.展开更多
The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L...The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L NaOH solution.Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag;and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass.The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA.The addition element Ag improves the forming speed and the stability of the passive film,which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.展开更多
The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray...The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that mieroalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (△G1-X(Tg)) and the smaller thermodynamic fragility index (△Sf/Tm, where ASf is the entropy of fusion, and Tm is the melting temperature) after mieroalloying correlated with the higher GFA.展开更多
According to the Gibbs free energy difference between liquid and crystal,a thermodynamic glass-forming ability(GFA) parameter related to characteristic temperatures,onset crystallization temperature(Tx)and liquidus te...According to the Gibbs free energy difference between liquid and crystal,a thermodynamic glass-forming ability(GFA) parameter related to characteristic temperatures,onset crystallization temperature(Tx)and liquidus temperature(Tl),was proposed for evaluating the GFA of bulk metallic glasses(BMGs).The new parameter defined asω=Tl(Tl+Tx)/(Tx(Tl-Tx))has good correlation with the critical section thickness(Zc)of Ca-Mg-Cu BMGs.Being verified by the glasses data,including oxide glasses,which were used to validate the former GFA parameters,ωis one of the most reliable and applicable GFA parameters among Trg(=Tg/Tl), γ(=Tx/(Tl+Tg)),α(=Tx/Tl),δ(=Tx/(Tl-Tg),and so on.Finally,predicting GFA of Cu-Ag-Zr-Ti and Cu-Zr-Ti-Al BMGs usingωwas compared with the experimental results.展开更多
Bulk amorphous Cu52.5Ti30Zr11.5Ni6 and Cu53.1Ti31.4Zr9.5Ni6 alloys with a high glass forming ability can be quenched into single amorphous rods with a diameter of 5 mm, and exhibit a high fracture strength of 2 212 MP...Bulk amorphous Cu52.5Ti30Zr11.5Ni6 and Cu53.1Ti31.4Zr9.5Ni6 alloys with a high glass forming ability can be quenched into single amorphous rods with a diameter of 5 mm, and exhibit a high fracture strength of 2 212 MPa and 2 184 MPa under compressive condition, respectively. The stress—strain curves show nearly 2% elastic strain limit, yet display no appreciable macroscopic plastic deformation prior to the catastrophic fracture due to highly localized shear bands. The present work shows clearly evidence of molten droplets besides well-developed vein patterns typical of bulk metallic glasses on the fracture surface, suggesting that localized melting induced by adiabatic heating may occur during the final failure event.展开更多
The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials....The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials. The amorphous and crystalline states, and thermal parameters, such as the glass transition temperature (Tg), the initial crystallization temperature (Tx), the supercooled liquid region (ΔTx=Tx-Tg), the reduced glass transition temperature T<sup>rg (Tg/Tm, Tm: the onset temperature of melting of the alloy, and Tg/Tl, Tl: the finished temperature of melting of the alloy) were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis. Glass forming ability of Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1,3,5,7,9) bulk metallic glasses has been studied. According to the results, the alloy (x=7) with the highest T<sup>rg (Tg/Tl=0.607, Tg/Tl=0.590) value, has the strongest glass forming ability among these alloys because its composition is near eutectic composition. The wide supercooled liquid region over 72 K indicates the high thermal stability for this alloy system. This bulk metallic glass exhibits quite high strength (Hv 1020). The success of production of the Fe-based bulk metallic glass with industrial materials is of great significance for the future progress of basic research and practical application.展开更多
The glass-forming ability(GFA) is an important factor in studying metallic glasses. So far, there are several criteria for evaluating the glass-forming ability. For predicting compositions for bulk metallic glasses, h...The glass-forming ability(GFA) is an important factor in studying metallic glasses. So far, there are several criteria for evaluating the glass-forming ability. For predicting compositions for bulk metallic glasses, however, they show more or less accuracy and versatility for different cases. In this work, four types of criteria for the glass-forming ability are categorized and reviewed: 1) Indicators with characteristic temperatures; 2) Indicators involving structural factors; 3) Indicators based on Miedema’s model; and 4) Indictors based on phase diagram. It is pointed out that a single indicator cannot be used to predict GFA of all the metallic glass systems correctly due to its limited theoretical framework, and the combination of multiple indicators shows more efficiency and accuracy. Though it is still very difficult to develop a universal indicator for GFA, recent indicators seem to be of more reliable physical meaning than those previously suggested.展开更多
Cu46Zr47-xA17Mx (M = Ce, Pr, Tb, and Gd) bulk metallic glassy (BMG) alloys were prepared by copper-mold vacuum suction casting. The effects of rare-earth elements on the glass-forming ability (GFA), thermal stab...Cu46Zr47-xA17Mx (M = Ce, Pr, Tb, and Gd) bulk metallic glassy (BMG) alloys were prepared by copper-mold vacuum suction casting. The effects of rare-earth elements on the glass-forming ability (GFA), thermal stability, and mechanical properties of Cu46Zr47-xA17Mx were investigated. The GFA of Cu46Zr47-xA17Mx (M = Ce, Pr) alloys is dependent on the content of Ce and Pr, and the optimal content is 4 at.%. Cu46Zr47-xA17Thx(X = 2, 4, and 5) amorphous alloys with a diameter of 5 mm can be prepared. The GFA of Cu46Zr47-xA17Gdx(x = 2, 4, and 5) increases with increasing Gd. Tx and Tp of all decrease. Tg is dependent on the rare-earth element and its content. ATx for most of these alloys decreases except the Cu46Zra2Al7Gd5 alloy. The activation energies △Eg, △Ex, and △Ep for the Cu46Zr42A17Gd5 BMG alloy with Kissinger equations are 340.7, 211.3, and 211.3 kJ/mol, respectively. These values with Ozawa equations are 334.8, 210.3, and 210.3 kJ/mol, respec- tively. The Cu46Zr45Al7Tb2 alloy presents the highest microhardness, Hv 590, while the Cu46Zr43A17Pr4 alloy presents the least, Hv 479. The compressive strength (at.f.) of the Cu46Zra3A17Gd4 BMG alloy is higher than that of the Cu46Zr43Al7Tb4 BMG alloy.展开更多
The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-f...The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-forming ability of Cu46.25Zr46.25Al7.5 alloy, and the glassy rod with a diameter of at least 12 mm can be formed. The glass transition temperature (Tg), temperature interval of su- percooled liquid region △Tx (=Tx-Tg), and reduced glass transition temperature Trg (=Tg/Tl) of Cu46.25Zr44.25Al7.5Er2 glassy alloy are 699 K, 62 K and 0.607, respectively.展开更多
The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare ...The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.展开更多
After substituting partial Cu and Mg with Zn or Al elements for Mg65Cu25Y10 alloy,respectively,the metallic glass plate samples with thickness of 2-3 mm were prepared by water-quenching,their respective glass-forming ...After substituting partial Cu and Mg with Zn or Al elements for Mg65Cu25Y10 alloy,respectively,the metallic glass plate samples with thickness of 2-3 mm were prepared by water-quenching,their respective glass-forming ability and thermal stability were studied by using differential thermal analysis(DTA) and X-ray diffraction(XRD). Using Kissinger equation,the activation energies of crystallization of these metallic glasses heated with a constant rate were calculated. The results show that Al element is greatly harmful to the glass-forming ability of Mg-Cu-Y alloys and cannot acquire bulk amorphous alloys;nevertheless,the effect of Zn element addition is indeterminate for various components. The magnitudes of thermal stability are also revealed.展开更多
Key step of exploiting a new type BMG (Bulk Metallic Glass) is quickly judging GFA (Glass Forming Ability) of the alloys. The mole melting heats of BMGs are calculated using the weighted averages principle. The reliab...Key step of exploiting a new type BMG (Bulk Metallic Glass) is quickly judging GFA (Glass Forming Ability) of the alloys. The mole melting heats of BMGs are calculated using the weighted averages principle. The reliability and limitation of Trg criterion for GFA are discussed. The reason why Trg of BMGs is larger than 0.5 is discussed. Two new criteria for GFA, ΔHmg and ΔGg, are proposed. GFA sequence of BMGs is calculated using the ΔHmg criterion, the result agrees with that of A. Inoue and the Rc criterion. Furthermore, as an example, the Rc of the alloys developed by Chuang DONG et al is calculated using the ΔHmg and ΔGg. The ascending sequence of these alloys calculated with the ΔHmg criterion agrees with that of Chuang DONG et al. On the contrary, the result by the ΔGg criterion is in contrary with Chuang DONG et al, indicating that the ΔHmg criterion is better and more convenient than the ΔGg criterion. Calculation showed that the optimum ΔHmg is -15.16 kJ/mol.展开更多
By a mean field theoretical computation,the equilibrium distributions of additional Ag and Al in the crystalline phase of CuZr-based alloys were determined to occupy the two sublattices of the B2 structure randomly.Wi...By a mean field theoretical computation,the equilibrium distributions of additional Ag and Al in the crystalline phase of CuZr-based alloys were determined to occupy the two sublattices of the B2 structure randomly.With the molecular dynamics technique,the effects of Ag and Al on the enthalpy difference(ΔH) between the supercooled melt and the crystalline phase were evaluated.The improved glass forming ability of Cu45Zr45Al10 and Cu45Zr45Ag10 can be attributed to their remarkably smaller ΔH than that of CuZr.The calculated diffusion coefficients are more sensitive to the atomic weight of the component atoms than to their interaction strength.As the component atom with the largest mass,the additional Ag increases the viscosity of the supercooled melt significantly and the experimentally stronger glass formation ability of Cu45Zr45Ag10 than Cu45Zr45Al10 can be well understood.展开更多
文摘A new microstructure model is developed for amorphous alloys,so called Cluster medel, in which the amorphous phase is thought of composing of randomly distributed ordered clusters of different sizes.Thermodynamic calculation on this model deduces a parameter describing the glass forming ability of metallic alloys:α_c=(1-2.08/Φ_m)T_g/T_m,where T_g is gass transition temperature,T_m is the melting temperature,and Φ_m is entralpy change of melting.It is believed that easy glass forming alloy systems have larger values of a_c.This new criterion of GFA not only provides the theoretical background for several GFA criteria in the literature cited,but also can predict the GFA of many alloy systems more reasonably and accurately.
基金Project(50371016) supported by the National Natural Science Foundation of ChinaProject(50611130629) supported by the International Cooperation and Exchange of the National Natural Science Foundation of China
文摘A series of rod samples with diameter of 3 mm(Zr0.55Al0.10Ni0.05Cu0.30)100-xFex(x=0,1,2,3,4) were prepared by magnetic suspend melting and copper mold suction casting method.The effects of a small amount of Fe on glass forming ability(GFA) and mechanical properties of Zr55Al10Ni5Cu30 bulk metallic glass(BMG) were investigated.The results show that the addition of an appropriate amount(less than 3%,mole fraction) of Fe enhances GFA,as indicated by the increase in the reduced glass transition temperature Trg(=Tg/Tl) and the parameter γ(=Tx/(Tg+Tl)) with increasing Fe content,and GFA gets deteriorated by further Fe addition(4%).The addition of Fe also effectively improves the compressive plasticity and increases the compressive fracture strength in these Zr-based BMGs.Compressive tests on BMG sample with 3 mm in diameter and 6 mm in length reveal work-hardening and a certain plastic strain in the alloy containing 2% Fe.The BMG composite containing 4% Fe also exhibits a high fracture strength along with significant plasticity.
基金supported by the Award Fund for Outstanding Young Scientist in Shandong Province, China (No. BS2011CL004)
文摘Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) amorphous alloys were obtained by single-roller melt-spinning technique and the effect of Y addition on the glass forming ability(GFA), crystallization and micro-hardness of Mg-Ni alloys were studied. The results show that the GFA of Mg86.33Ni13.67-xYx(x=0, 1, 3, 6, 10) is improved successfully with the Y addition. The highest GFA appeares at x=6, while the reduced glass transition temperature (Trg) is 0.5225 and the supercooled liquid region(ΔTx) is 42.06 K; the position of the main diffraction halo is different for the alloys, and the maximum of the main diffraction halo of alloys with x=0, 1, 3 corresponds to the main peaks of a metastable fcc-Mg6Ni or fcc-Mg6Ni + Ni-Y intermetallic phases, and for the alloys with x=6, 10, it corresponds to Mg-Y and Ni-Y intermetallic phases; the micro-hardness of the alloys is improved with Y additions, and the highest micro-hardness is obtained at x=6 at.%, which is 960 MPa.
基金Iran University of Science and Technology for the financial support
文摘The formation of bulk metallic glasses(BMGs) in the ternary Zr(56) Co(28-x)Al(16) and quaternary Zr(56) Co(28-x)CuxAl16(x=2, 4, 5, 6, 7, mole fraction, %) glassy alloys was investigated via the copper mold suction casting method. The main purpose of this work was to locate the optimal BMG-forming composition for the quaternary Zr Co(Cu)Al alloys and to improve the plasticity of the parent alloy. The X-ray diffractometry(XRD), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC) were used to investigate the glassy alloys structure and their glass forming ability(GFA). In addition, the compression test, microhardness, nano-indentation and scanning electron microscopy(SEM) were utilized to discuss the possible mechanisms involved in the enhanced plasticity achievement. The highest GFA among Cu-containing alloys was found for the Zr(56) Co(22) Cu6 Al(16) alloy, which was similar to that of the base alloy. Furthermore, the plasticity of the base alloy increased significantly from 3.3% to 6% for the Zr(56) Co(22) Cu)6 Al(16) BMG. The variations in the plasticity and GFA of the alloys were discussed by considering the positive heat of mixing within Cu and Co elements.
基金This work was financially supported by the National Natural Science Foundation of China (No.50431030, 50671050)the Basic Science Research Foundation of Tsinghua University (No.091201107)the National Center for Nanoscience and Technology of China.
文摘Pd81Si19 amorphous alloys were prepared by combination methods of melt spinning and B2O3 flux treatment. A compari- son between the ribbons prepared from the fluxed ingots and the non-fluxed ones has been carried out. The result reveals that after fluxing treatment the glass transition temperature of the as-prepared glassy ribbons is reduced while the initial crystallization tem- perature is enhanced. It results in that the supercooled liquid region (defined as the difference between the initial crystallization tem- perature and the glass transition temperature) of the glassy alloy treated with fluxing technology has been increased from 31 to 42 K. This shows that fluxing technique can enhance the glass forming ability (GFA) of the binary alloy and improve the thermal stability of supercooled liquid of the glassy alloy.
文摘The thermodynamic model of multicomponent chemical short range order (MCSRO) was established in order to evaluate the glass forming ability (GFA) of ternary alloys. Comprehensive numerical calculations using MSCRO software were conducted to obtain the composition dependence of the MCSRO undercooling in Zr Ni Cu, Zr Si Cu and Pd Si Cu ternary systems. By the MCSRO undercooling principle, the composition range of Zr Ni Cu system with optimum GFA is determined to be 62.5 ~ 75 Zr, 5~ 20 Cu, 12.5 ~ 25 Ni ( n (Ni)/ n (Cu)=1~5). The TTT curves of Zr Ni Cu system were also calculated based on the MCSRO model. The critical cooling rates for Zr based alloy with deep MSCRO undercooling are estimated to be as low as 100?K/s, which is consistent with the practical cooling rate in the preparation of Zr based bulk metallic glass (BMG). The calculation also illustrates that the easy glass forming systems such as Pd based alloys exhibit an extraordinary deep MCSRO undercooling. It is shown that the thermodynamic model of MCSRO provides an effective method for the alloy designing of BMG.
基金the National Natural Science Foundation of China(Grant No.51701071)the Natural Science Foundation of Hunan Province,China(Grant Nos.2018JJ3100 and 2018JJ2078)the Project of the Hunan Educational Department,China(Grant No.19B122)。
文摘The heredity of clusters in rapidly cooled(Zr_(50)Cu_(50))_(100-x)Al_x melts and its correlation with glass-forming ability(GFA)are studied via molecular dynamics simulations.Pair distribution function and the largest standard cluster(LSC)are adopted to characterize the local atomic structures in the(Zr_(50)Cu_(50))_(100-x)Al_(x)systems.The[12/555]icosahedra and their medium-range order(IMRO)play an important role in forming(Zr_(50)Cu_(50))_(100-x)Al_(x)metallic glasses(MGs).The fraction of[12/555],the number of IMRO,and the maximum size of IMRO in MGs increase significantly with increasing x.A tracking study further reveals that the configuration heredity of icosahedral clusters starts from supercooled liquids.No direct correlation exists between the GFA and the onset temperature of continuous or stated heredity.Instead,a larger hereditary supercooled degree of icosahedra matches with better GFA of Al-doped Zr_(50)Cu_(50)alloys.
基金supported by the National Natural Science Foundation of China (Grant No. 50972066)
文摘The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L NaOH solution.Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag;and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass.The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA.The addition element Ag improves the forming speed and the stability of the passive film,which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass.
基金Project supported by the National Natural Science Foundation of China (50471052)Natural Science Foundation of Shandong Province (Z2004F02)
文摘The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that mieroalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (△G1-X(Tg)) and the smaller thermodynamic fragility index (△Sf/Tm, where ASf is the entropy of fusion, and Tm is the melting temperature) after mieroalloying correlated with the higher GFA.
文摘According to the Gibbs free energy difference between liquid and crystal,a thermodynamic glass-forming ability(GFA) parameter related to characteristic temperatures,onset crystallization temperature(Tx)and liquidus temperature(Tl),was proposed for evaluating the GFA of bulk metallic glasses(BMGs).The new parameter defined asω=Tl(Tl+Tx)/(Tx(Tl-Tx))has good correlation with the critical section thickness(Zc)of Ca-Mg-Cu BMGs.Being verified by the glasses data,including oxide glasses,which were used to validate the former GFA parameters,ωis one of the most reliable and applicable GFA parameters among Trg(=Tg/Tl), γ(=Tx/(Tl+Tg)),α(=Tx/Tl),δ(=Tx/(Tl-Tg),and so on.Finally,predicting GFA of Cu-Ag-Zr-Ti and Cu-Zr-Ti-Al BMGs usingωwas compared with the experimental results.
文摘Bulk amorphous Cu52.5Ti30Zr11.5Ni6 and Cu53.1Ti31.4Zr9.5Ni6 alloys with a high glass forming ability can be quenched into single amorphous rods with a diameter of 5 mm, and exhibit a high fracture strength of 2 212 MPa and 2 184 MPa under compressive condition, respectively. The stress—strain curves show nearly 2% elastic strain limit, yet display no appreciable macroscopic plastic deformation prior to the catastrophic fracture due to highly localized shear bands. The present work shows clearly evidence of molten droplets besides well-developed vein patterns typical of bulk metallic glasses on the fracture surface, suggesting that localized melting induced by adiabatic heating may occur during the final failure event.
文摘The bulk Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1, 3, 5, 7, 9) amorphous rods with diameters of 1.5 mm were successfully prepared by copper mold casting method with the low purity raw materials. The amorphous and crystalline states, and thermal parameters, such as the glass transition temperature (Tg), the initial crystallization temperature (Tx), the supercooled liquid region (ΔTx=Tx-Tg), the reduced glass transition temperature T<sup>rg (Tg/Tm, Tm: the onset temperature of melting of the alloy, and Tg/Tl, Tl: the finished temperature of melting of the alloy) were investigated by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis. Glass forming ability of Fe<sup>60 CoxZr<sup>10 Mo5W2B<sup>23-x (x=1,3,5,7,9) bulk metallic glasses has been studied. According to the results, the alloy (x=7) with the highest T<sup>rg (Tg/Tl=0.607, Tg/Tl=0.590) value, has the strongest glass forming ability among these alloys because its composition is near eutectic composition. The wide supercooled liquid region over 72 K indicates the high thermal stability for this alloy system. This bulk metallic glass exhibits quite high strength (Hv 1020). The success of production of the Fe-based bulk metallic glass with industrial materials is of great significance for the future progress of basic research and practical application.
基金Project(50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The glass-forming ability(GFA) is an important factor in studying metallic glasses. So far, there are several criteria for evaluating the glass-forming ability. For predicting compositions for bulk metallic glasses, however, they show more or less accuracy and versatility for different cases. In this work, four types of criteria for the glass-forming ability are categorized and reviewed: 1) Indicators with characteristic temperatures; 2) Indicators involving structural factors; 3) Indicators based on Miedema’s model; and 4) Indictors based on phase diagram. It is pointed out that a single indicator cannot be used to predict GFA of all the metallic glass systems correctly due to its limited theoretical framework, and the combination of multiple indicators shows more efficiency and accuracy. Though it is still very difficult to develop a universal indicator for GFA, recent indicators seem to be of more reliable physical meaning than those previously suggested.
文摘Cu46Zr47-xA17Mx (M = Ce, Pr, Tb, and Gd) bulk metallic glassy (BMG) alloys were prepared by copper-mold vacuum suction casting. The effects of rare-earth elements on the glass-forming ability (GFA), thermal stability, and mechanical properties of Cu46Zr47-xA17Mx were investigated. The GFA of Cu46Zr47-xA17Mx (M = Ce, Pr) alloys is dependent on the content of Ce and Pr, and the optimal content is 4 at.%. Cu46Zr47-xA17Thx(X = 2, 4, and 5) amorphous alloys with a diameter of 5 mm can be prepared. The GFA of Cu46Zr47-xA17Gdx(x = 2, 4, and 5) increases with increasing Gd. Tx and Tp of all decrease. Tg is dependent on the rare-earth element and its content. ATx for most of these alloys decreases except the Cu46Zra2Al7Gd5 alloy. The activation energies △Eg, △Ex, and △Ep for the Cu46Zr42A17Gd5 BMG alloy with Kissinger equations are 340.7, 211.3, and 211.3 kJ/mol, respectively. These values with Ozawa equations are 334.8, 210.3, and 210.3 kJ/mol, respec- tively. The Cu46Zr45Al7Tb2 alloy presents the highest microhardness, Hv 590, while the Cu46Zr43A17Pr4 alloy presents the least, Hv 479. The compressive strength (at.f.) of the Cu46Zra3A17Gd4 BMG alloy is higher than that of the Cu46Zr43Al7Tb4 BMG alloy.
基金This work was financially supported by the National Natural Science Foundation of China (No.50225103, 50471001, and 50631010).
文摘The formation and thermal stabilities of Cu46.25Zr46.25xAl7.5Erx (x=0 to 8) bulk metallic glasses (BMGs) were investigated. The addition of a small amount of Er (2at%) for replacing Zr effectively improves the glass-forming ability of Cu46.25Zr46.25Al7.5 alloy, and the glassy rod with a diameter of at least 12 mm can be formed. The glass transition temperature (Tg), temperature interval of su- percooled liquid region △Tx (=Tx-Tg), and reduced glass transition temperature Trg (=Tg/Tl) of Cu46.25Zr44.25Al7.5Er2 glassy alloy are 699 K, 62 K and 0.607, respectively.
基金financially supported by the National Natural Science Foundation of China (Nos. 51401085 and 51202088)the Shandong Province Higher Educational Science and Technology Program (No. J14LA06)
文摘The glass-forming region of B2O3-Al2O3-SiO2 (BAS) glass heavily doped with rare earth oxides was investigated by an effective method, and the chemical stability was investigated by powder method. Influences of rare earth oxides on the glass-forming ability and the chemical stability of the BAS glass were also discussed. The experimental results show that the BAS glass-forming region expands firstly with the increase of the Tb2O3 content up to 30mol% and then shrinks. The acid-resistant capacity of the BAS glass doped with rare earth oxides is the lowest, the water-resistant capacity is secondary, and the alkali-resistant capacity is the best. Besides, the glass chemical stability can be improved by doping appropriate amount of rare earth oxides. Moreover, the stronger the ionic polarization ability of the rare earth ions is, the better the chemical stability of the BAS glass will be.
文摘After substituting partial Cu and Mg with Zn or Al elements for Mg65Cu25Y10 alloy,respectively,the metallic glass plate samples with thickness of 2-3 mm were prepared by water-quenching,their respective glass-forming ability and thermal stability were studied by using differential thermal analysis(DTA) and X-ray diffraction(XRD). Using Kissinger equation,the activation energies of crystallization of these metallic glasses heated with a constant rate were calculated. The results show that Al element is greatly harmful to the glass-forming ability of Mg-Cu-Y alloys and cannot acquire bulk amorphous alloys;nevertheless,the effect of Zn element addition is indeterminate for various components. The magnitudes of thermal stability are also revealed.
文摘Key step of exploiting a new type BMG (Bulk Metallic Glass) is quickly judging GFA (Glass Forming Ability) of the alloys. The mole melting heats of BMGs are calculated using the weighted averages principle. The reliability and limitation of Trg criterion for GFA are discussed. The reason why Trg of BMGs is larger than 0.5 is discussed. Two new criteria for GFA, ΔHmg and ΔGg, are proposed. GFA sequence of BMGs is calculated using the ΔHmg criterion, the result agrees with that of A. Inoue and the Rc criterion. Furthermore, as an example, the Rc of the alloys developed by Chuang DONG et al is calculated using the ΔHmg and ΔGg. The ascending sequence of these alloys calculated with the ΔHmg criterion agrees with that of Chuang DONG et al. On the contrary, the result by the ΔGg criterion is in contrary with Chuang DONG et al, indicating that the ΔHmg criterion is better and more convenient than the ΔGg criterion. Calculation showed that the optimum ΔHmg is -15.16 kJ/mol.
文摘By a mean field theoretical computation,the equilibrium distributions of additional Ag and Al in the crystalline phase of CuZr-based alloys were determined to occupy the two sublattices of the B2 structure randomly.With the molecular dynamics technique,the effects of Ag and Al on the enthalpy difference(ΔH) between the supercooled melt and the crystalline phase were evaluated.The improved glass forming ability of Cu45Zr45Al10 and Cu45Zr45Ag10 can be attributed to their remarkably smaller ΔH than that of CuZr.The calculated diffusion coefficients are more sensitive to the atomic weight of the component atoms than to their interaction strength.As the component atom with the largest mass,the additional Ag increases the viscosity of the supercooled melt significantly and the experimentally stronger glass formation ability of Cu45Zr45Ag10 than Cu45Zr45Al10 can be well understood.