According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduc...According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduced in this paper based on MACROMAX-2 concentrated and dis-tributedcontrol system. The configuration of management information and control loop is described, and research tests were performed to check the functions of system.展开更多
Under some assumptions and dividing the combustion space into several isothermal zones and isothermal surface elements, a two-dimensional mathematical model for combustion space in cross-fired glass melting furnaces w...Under some assumptions and dividing the combustion space into several isothermal zones and isothermal surface elements, a two-dimensional mathematical model for combustion space in cross-fired glass melting furnaces was constructed. The finite element method and the Gauss integration were used to calculate direct ex-change areas, and a inverse matrix was used to obtained the total ex-change areas. The temperature distributions were obtained by itera-tions. Some results were presented to show the effects of the fire tem-perature distribution, the convective -heat transfer coefficients and the heat losses through crown surfaces on the temperature distributions.展开更多
Regenerator checkerwork for glass melting furnaces should have high resistance against thermal stress and chemical attack,high mechanical stability,high efficiency to recover the heat from waste gas and low tendency f...Regenerator checkerwork for glass melting furnaces should have high resistance against thermal stress and chemical attack,high mechanical stability,high efficiency to recover the heat from waste gas and low tendency for clogging.This article reviews the innovation of the regenerator checkerwork from the past decades.The state of the art for optimised material choice and optimised checker shapes will be reported.展开更多
1 Scope This standard specifies the brand, technical requirements, test methods, inspection rules, marking, packing, transportation, storage, and quality certificate of sintered AZS bricks for glass melting furnace. ...1 Scope This standard specifies the brand, technical requirements, test methods, inspection rules, marking, packing, transportation, storage, and quality certificate of sintered AZS bricks for glass melting furnace. This standard is applicable to sintered AZS bricks for glass melting furnace.展开更多
JC/T 494-92(96) 1 ScopeThis standard specifies the technical requirements, test methods, inspection rules, marking, packing, transportation, and storage of fused cast alumina refractory products for glass melting furn...JC/T 494-92(96) 1 ScopeThis standard specifies the technical requirements, test methods, inspection rules, marking, packing, transportation, and storage of fused cast alumina refractory products for glass melting furnace. This standard is applicable to the fused cast alumina refractory products for glass melting furnace (called products for short).2 Normative ReferencesGB 2997 Test method for apparent porosity, water absorption, bulk density and true porosity of dense shaped refractory productsGB 5072 Test method for cold crushing strength of dense shaped refractory productsGB 5989 Test method for refractoriness under load of dense shaped refractory products (Differential, with rising temperature)GB 7320 Test method for thermal expansion of refractory productsGB 10204 Test method for corrosion resistance of refractories for glass melting furnace to molten glassGB 10325 Stacking, sampling, acceptance, storage and transportation of shaped refractory productsGB 10326 Inspections of dimension, appearance and section of refractory productsGB/T 14351 Chemical analysis method of fused cast alumina refractoriesYB 4015 Sample preparation for testing of refractory products for glass melting furnaceYB 4016 Sampling and inspection of refractory products for glass melting furnaceJC 493 Fused cast zirconia corundum refractory products for glass melting furnace展开更多
1 Scope This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of silica refractory bricks for glass mel...1 Scope This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of silica refractory bricks for glass melting furRaces.展开更多
This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of high quality silica bricks for glass melting fu...This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of high quality silica bricks for glass melting furnace.展开更多
This standard specifies the classification, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of low porosity fireclay bricks for glass melting f...This standard specifies the classification, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of low porosity fireclay bricks for glass melting furnace.展开更多
Continuous glass melting tanks represent thermo-chemical reactors with very complex flow patterns. Controlling the flow patterns within the glass melting tanks with the aim of improving their performance is one of the...Continuous glass melting tanks represent thermo-chemical reactors with very complex flow patterns. Controlling the flow patterns within the glass melting tanks with the aim of improving their performance is one of the glass industry primary challenges. The tank performance is basically determined by the RTD (residence time distribution) of the glass melt, which directly impacts the glass quality and energy distribution. In the present work, numerical simulations are carried out on the electromagnetic flow control to investigate how well the flow can be controlled by externally generated electromagnetic (Lorenz) forces that are added to the glass melt. Furthermore, the melting tanks are equipped with supplementary electric heating systems called "electric boosters". The desired result would be an improved RTD. The electromagnetic flow control is called "electromagnetic boosting" and can be realized by exposing the glass bath to an external magnetic field generating Lorentz forces on the glass melt as an additional flow component. The numerical simulations of the present study require coupled calculations of electromagnetic field, flow field, and temperature field, because the material properties of glass melt are strongly temperature-dependent. The computational results show that electromagnetic boosting is an excellent way of improving the RTD in glass melting tanks, ultimately resulting in better glass quality and increased productivity. Of course, the glass industry is highly interested in achieving exactly this result.展开更多
The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the...The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.展开更多
Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological beha...Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological behavior of ZnO-Bi_2O_3-B_2O_3 system glass melt,the properties of viscosity,thermal expansion,fluxion property and wetting process between cylinder samples and stainless steel were investigated with the rotating crucible viscometer,dilato meter and high-temperature microscope.The structure of sintered glass samples was investigated with scanning electron microscope.The results show that the B_2O_3 content increasing in B_1-B_3 at the given temperature between 400 ℃ and 500 ℃ leads to the increasing of the sample viscosity.When the amount of B_2O_3 increases from 5.24%to 9.24%(mass fraction),the coefficients of thermal expansion of glass samples decrease smoothly from 10.94×10^(-6) to10.71×10^(-6) and 10.38×10^(-6) ℃^(-1) respectively.In the case of sealing temperature,its value increases from 453 ℃ to 494 ℃.ZnO-Bi_2O_3-B_2O_3 system low-melting glass powder sintering was with viscous liquid to participate,which could make the densification of glass sample more effective and more efficient.With the content of B_2O_3 increasing,the wetting angle between the glasses samples and stainless steel could also increase,and the resulting appropriate sealing temperature range is 460-490 ℃.展开更多
B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper ter...B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes.展开更多
This study reports preparation of glass composition (54.50 wt.%) SiO2, (10.80 wt.%) B2O3, (14.20 wt.%) Na2O, (1.20 wt.%) K2O, (6.00 wt.%) CaO, (4.00 wt.%) Fe2O3 and (9.30 wt.%) TiO2 by melt quenching met...This study reports preparation of glass composition (54.50 wt.%) SiO2, (10.80 wt.%) B2O3, (14.20 wt.%) Na2O, (1.20 wt.%) K2O, (6.00 wt.%) CaO, (4.00 wt.%) Fe2O3 and (9.30 wt.%) TiO2 by melt quenching method using direct microwave heating and conventional resistive heating. Study of dielectric loss factor of the glass as function of temperature illustrated increasing loss factor above 370 ℃, 550 ℃, 650 ℃ and 900 ℃, indicating enhanced microwave absorption by the glass at above these temperatures. Chemical analysis results of both the glasses depicted more volatilization loss of volatile ingredients in conventional heating. The study of chemical durability was performed from leachate analysis describing less leaching of Na2O, K2O and other constituents from glass melted in microwave furnace. Glass transition temperatures (Tg) were found to be 576.3 ℃ and 569.5 ℃ for glass melted in conventional and microwave heating route, respectively. Laboratory experiment of glass melting utilizing microwave energy as an alternate heating source demonstrated 70%-75% electrical power saving.展开更多
The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at dif...The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.展开更多
The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the ...The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the same time. Applicable materials are in particular optical glasses,which are applied for lenses,fibers or filters,because the skull melting technology allows high process temperatures and high purities of the final product.In the production of glass materials strong requirements have to be fulfilled regarding the optical characteristics,which are mainly defined and influenced by the melting of the raw material and the following refining process.An unsolved problem in the melting process of glasses and oxides using the inductive skull melting technology was in the past the unknown heat and mass transfer in the melt because temperature and melt flow measurements in the melt are practically impossible due to the high temperatures.On the other hand the temperature and velocity distribution in the melt is very important regarding the safety of the melting process,the process control for producing the required properties of the material or the further development of skull melting installations.The paper describes a new numerical model which is able to simulate the instationary 3D melt flow of glasses and oxides.The numerical model takes into account electromagnetic,convection and Marangoni forces.By this a comprehensive view of the hidden processes in the practical experiments could be obtained. By means of the new numerical model different glass and oxide melting processes were simulated and the results were compared with experimental results.The comparisons show first of all a very good agreement between experimental and numerical results at the melt surfaces.Additionally the numerical results allow to look much deeper inside the melt and show interesting new effects of the heat and mass transfer below the melt surface which were unknown before.展开更多
An integral mathematical model has been developed to simulate the performance of a glass melting system.The heart of the model is a three dimensional flow and heat transfer model capable of calculating the glass flow ...An integral mathematical model has been developed to simulate the performance of a glass melting system.The heart of the model is a three dimensional flow and heat transfer model capable of calculating the glass flow and temperature distribution in the melt. The glass quality is predicted by using additional sub models for flow tracking, melting kinetics, homogenizing, refining, and refractory corrosion. A sample result is presented to illustrate the analysis of the glass melting process.展开更多
A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the fl...A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the flow patterns within the melting tank.In order to improve the quality of glass products and the efficiency of the melting process,it is necessary to control the flow patterns and to optimize the temperature distribution within the melting tank.Using Lorentz force to create additional flow components based on electric current density distributions and externally generated magnetic fields is an excellent method to obtain targeted and tailored flow influences.In order to evaluate this method,it is necessary to simulate the induced alterations of the melt flow.Such numerical simulations require the coupling of the electromagnetic and flow field calculations including the energy equation because the electrical conductivity of the molten glass is strongly dependent on the temperature.The idea is to include the calculation of the magnetic field completely into FLUENT using the so-called User Defined Scalars(UDS)and User Defined Functions(UDF).展开更多
Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much atten...Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.展开更多
This paper illustrates an overview of current research activities in the working group 'Electromagnetic Processing of Materials' of the department Inorganic-Nonmetallic Materials.These are 'Electromagnetic...This paper illustrates an overview of current research activities in the working group 'Electromagnetic Processing of Materials' of the department Inorganic-Nonmetallic Materials.These are 'Electromagnetic module to flow impact in special melting plants for the production of High-tech glasses', 'Numerical study of EM controlled flow in crystallizers of inorganic materials', 'Design,test and optimization of sophisticated magnet systems for Lorentz force velocimetry in electrially low conducting fluids', 'Magnetic ion manipulation in glass melts with Kelvin force', 'Electromechanical dry t'me milling of raw materials' and 'Synthesis,characterization and application of Titatium doped hexaferrites'.The primary results are presented here.展开更多
文摘According to the characteristics of the ther-motechnical parameters such as temperature pressure and glass level for glass melting furnace, the design method for monitoring and controlling these parameters is introduced in this paper based on MACROMAX-2 concentrated and dis-tributedcontrol system. The configuration of management information and control loop is described, and research tests were performed to check the functions of system.
文摘Under some assumptions and dividing the combustion space into several isothermal zones and isothermal surface elements, a two-dimensional mathematical model for combustion space in cross-fired glass melting furnaces was constructed. The finite element method and the Gauss integration were used to calculate direct ex-change areas, and a inverse matrix was used to obtained the total ex-change areas. The temperature distributions were obtained by itera-tions. Some results were presented to show the effects of the fire tem-perature distribution, the convective -heat transfer coefficients and the heat losses through crown surfaces on the temperature distributions.
文摘Regenerator checkerwork for glass melting furnaces should have high resistance against thermal stress and chemical attack,high mechanical stability,high efficiency to recover the heat from waste gas and low tendency for clogging.This article reviews the innovation of the regenerator checkerwork from the past decades.The state of the art for optimised material choice and optimised checker shapes will be reported.
文摘1 Scope This standard specifies the brand, technical requirements, test methods, inspection rules, marking, packing, transportation, storage, and quality certificate of sintered AZS bricks for glass melting furnace. This standard is applicable to sintered AZS bricks for glass melting furnace.
文摘JC/T 494-92(96) 1 ScopeThis standard specifies the technical requirements, test methods, inspection rules, marking, packing, transportation, and storage of fused cast alumina refractory products for glass melting furnace. This standard is applicable to the fused cast alumina refractory products for glass melting furnace (called products for short).2 Normative ReferencesGB 2997 Test method for apparent porosity, water absorption, bulk density and true porosity of dense shaped refractory productsGB 5072 Test method for cold crushing strength of dense shaped refractory productsGB 5989 Test method for refractoriness under load of dense shaped refractory products (Differential, with rising temperature)GB 7320 Test method for thermal expansion of refractory productsGB 10204 Test method for corrosion resistance of refractories for glass melting furnace to molten glassGB 10325 Stacking, sampling, acceptance, storage and transportation of shaped refractory productsGB 10326 Inspections of dimension, appearance and section of refractory productsGB/T 14351 Chemical analysis method of fused cast alumina refractoriesYB 4015 Sample preparation for testing of refractory products for glass melting furnaceYB 4016 Sampling and inspection of refractory products for glass melting furnaceJC 493 Fused cast zirconia corundum refractory products for glass melting furnace
文摘1 Scope This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of silica refractory bricks for glass melting furRaces.
文摘This standard specifies the classification, technical requirements, test method, inspection rules, marking, packing, transportation, storage and quality certification of high quality silica bricks for glass melting furnace.
文摘This standard specifies the classification, technical requirements, test methods, inspection rules, marking, packing, transportation, storage and quality certificate of low porosity fireclay bricks for glass melting furnace.
文摘Continuous glass melting tanks represent thermo-chemical reactors with very complex flow patterns. Controlling the flow patterns within the glass melting tanks with the aim of improving their performance is one of the glass industry primary challenges. The tank performance is basically determined by the RTD (residence time distribution) of the glass melt, which directly impacts the glass quality and energy distribution. In the present work, numerical simulations are carried out on the electromagnetic flow control to investigate how well the flow can be controlled by externally generated electromagnetic (Lorenz) forces that are added to the glass melt. Furthermore, the melting tanks are equipped with supplementary electric heating systems called "electric boosters". The desired result would be an improved RTD. The electromagnetic flow control is called "electromagnetic boosting" and can be realized by exposing the glass bath to an external magnetic field generating Lorentz forces on the glass melt as an additional flow component. The numerical simulations of the present study require coupled calculations of electromagnetic field, flow field, and temperature field, because the material properties of glass melt are strongly temperature-dependent. The computational results show that electromagnetic boosting is an excellent way of improving the RTD in glass melting tanks, ultimately resulting in better glass quality and increased productivity. Of course, the glass industry is highly interested in achieving exactly this result.
文摘The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.
基金Project(2012BAA08B04)supported by the National“Twelfth Five-Year”Plan for Science&Technology Support of China
文摘Glasses based on ZnO-Bi_2O_3-B_2O_3 system are expected to be a new kind of sealing glasses because of their low melting temperature and other properties.In order to reveal the effect of B_2O_3 on the rheological behavior of ZnO-Bi_2O_3-B_2O_3 system glass melt,the properties of viscosity,thermal expansion,fluxion property and wetting process between cylinder samples and stainless steel were investigated with the rotating crucible viscometer,dilato meter and high-temperature microscope.The structure of sintered glass samples was investigated with scanning electron microscope.The results show that the B_2O_3 content increasing in B_1-B_3 at the given temperature between 400 ℃ and 500 ℃ leads to the increasing of the sample viscosity.When the amount of B_2O_3 increases from 5.24%to 9.24%(mass fraction),the coefficients of thermal expansion of glass samples decrease smoothly from 10.94×10^(-6) to10.71×10^(-6) and 10.38×10^(-6) ℃^(-1) respectively.In the case of sealing temperature,its value increases from 453 ℃ to 494 ℃.ZnO-Bi_2O_3-B_2O_3 system low-melting glass powder sintering was with viscous liquid to participate,which could make the densification of glass sample more effective and more efficient.With the content of B_2O_3 increasing,the wetting angle between the glasses samples and stainless steel could also increase,and the resulting appropriate sealing temperature range is 460-490 ℃.
基金the National Natural Science Foundation of China(Nos.51372179,51772224)the Open Project Foundation of Guangdong Fenghua Advanced Technology(No.FHR-JS-202011024)。
文摘B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes.
文摘This study reports preparation of glass composition (54.50 wt.%) SiO2, (10.80 wt.%) B2O3, (14.20 wt.%) Na2O, (1.20 wt.%) K2O, (6.00 wt.%) CaO, (4.00 wt.%) Fe2O3 and (9.30 wt.%) TiO2 by melt quenching method using direct microwave heating and conventional resistive heating. Study of dielectric loss factor of the glass as function of temperature illustrated increasing loss factor above 370 ℃, 550 ℃, 650 ℃ and 900 ℃, indicating enhanced microwave absorption by the glass at above these temperatures. Chemical analysis results of both the glasses depicted more volatilization loss of volatile ingredients in conventional heating. The study of chemical durability was performed from leachate analysis describing less leaching of Na2O, K2O and other constituents from glass melted in microwave furnace. Glass transition temperatures (Tg) were found to be 576.3 ℃ and 569.5 ℃ for glass melted in conventional and microwave heating route, respectively. Laboratory experiment of glass melting utilizing microwave energy as an alternate heating source demonstrated 70%-75% electrical power saving.
文摘The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.
文摘The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the same time. Applicable materials are in particular optical glasses,which are applied for lenses,fibers or filters,because the skull melting technology allows high process temperatures and high purities of the final product.In the production of glass materials strong requirements have to be fulfilled regarding the optical characteristics,which are mainly defined and influenced by the melting of the raw material and the following refining process.An unsolved problem in the melting process of glasses and oxides using the inductive skull melting technology was in the past the unknown heat and mass transfer in the melt because temperature and melt flow measurements in the melt are practically impossible due to the high temperatures.On the other hand the temperature and velocity distribution in the melt is very important regarding the safety of the melting process,the process control for producing the required properties of the material or the further development of skull melting installations.The paper describes a new numerical model which is able to simulate the instationary 3D melt flow of glasses and oxides.The numerical model takes into account electromagnetic,convection and Marangoni forces.By this a comprehensive view of the hidden processes in the practical experiments could be obtained. By means of the new numerical model different glass and oxide melting processes were simulated and the results were compared with experimental results.The comparisons show first of all a very good agreement between experimental and numerical results at the melt surfaces.Additionally the numerical results allow to look much deeper inside the melt and show interesting new effects of the heat and mass transfer below the melt surface which were unknown before.
文摘An integral mathematical model has been developed to simulate the performance of a glass melting system.The heart of the model is a three dimensional flow and heat transfer model capable of calculating the glass flow and temperature distribution in the melt. The glass quality is predicted by using additional sub models for flow tracking, melting kinetics, homogenizing, refining, and refractory corrosion. A sample result is presented to illustrate the analysis of the glass melting process.
文摘A common way to produce glass is to use melting tanks that work continually with several hundred tons per day.The process of efficiently melting,refining,and homogenizing the glass melt is strongly dependent on the flow patterns within the melting tank.In order to improve the quality of glass products and the efficiency of the melting process,it is necessary to control the flow patterns and to optimize the temperature distribution within the melting tank.Using Lorentz force to create additional flow components based on electric current density distributions and externally generated magnetic fields is an excellent method to obtain targeted and tailored flow influences.In order to evaluate this method,it is necessary to simulate the induced alterations of the melt flow.Such numerical simulations require the coupling of the electromagnetic and flow field calculations including the energy equation because the electrical conductivity of the molten glass is strongly dependent on the temperature.The idea is to include the calculation of the magnetic field completely into FLUENT using the so-called User Defined Scalars(UDS)and User Defined Functions(UDF).
基金Item Sponsored by National Natural Science Foundation of China(51501043)National Scientific and Technological Support Projects of China(2013BAE08B01)Science and Technology Program of Beijing of China(Z141100003814007)
文摘Continuous precision casting is an important trend in modern industrialization.Clustering effects in glassforming metallic liquids tremendously influence the properties of rapidly quenched ribbons;therefore,much attention has been paid to the study of Fe-based glass-forming melts at high temperatures.Recent investigations of these melts are categorized and reviewed.It is concluded that more efforts are still required to reveal the discipline of amorphization brought about by rapid quenching of Fe-based glass-forming melts.
基金Item Sponsored by the Deutsche Forschungsgemeinschaft (DFG) Thüringer Aufbaubank (TAB) or by Other Bilateral Projects
文摘This paper illustrates an overview of current research activities in the working group 'Electromagnetic Processing of Materials' of the department Inorganic-Nonmetallic Materials.These are 'Electromagnetic module to flow impact in special melting plants for the production of High-tech glasses', 'Numerical study of EM controlled flow in crystallizers of inorganic materials', 'Design,test and optimization of sophisticated magnet systems for Lorentz force velocimetry in electrially low conducting fluids', 'Magnetic ion manipulation in glass melts with Kelvin force', 'Electromechanical dry t'me milling of raw materials' and 'Synthesis,characterization and application of Titatium doped hexaferrites'.The primary results are presented here.