The interface excitation (IE) on intermolecular interface is a common concept connecting the glass transition (GT), macromolecular entan-glement (ME), and turbulence. IE has an addi-tional repulsion energy and extra v...The interface excitation (IE) on intermolecular interface is a common concept connecting the glass transition (GT), macromolecular entan-glement (ME), and turbulence. IE has an addi-tional repulsion energy and extra vacancy vol-ume that result from the two neighboring molecules with antiparallel delocalization all in, e.g., the z-axial ground state of single-molecule instantaneous polarized dipole at GT. IEs only occur in the 8 orders of 2D IE loop-flows on lo-cal x-y projection plane. Theoretical proof of the 3.4 power law of ME viscosity reveals that (i) the delocalization mode of GT and solid-liquid tran-sition is solitary wave;wave- particle duality of solitary wave is ascribed to the equal probabili-ties between appearing and disappearing of IE loop-flow in inverse cascade and cascade mode;(ii) macromolecular chain-length in ME motion corresponds to Reynolds number in hydrody-namics;both the ME motion and the turbulent flow obey the same scale law. IE is not the ex-citation of dipole energy level at GT. However, when IEs are associated with the energy levels of instantaneous polarized dipole, we predict that the coherent structure formed by multilevel 8 orders of 2D IE loop-flows is the physical ori-gin of turbulence based on the universal ran-dom delocalization transition theory.展开更多
A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large i...A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and rearrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes’ mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the inherency maximum order-potential structure in random systems.展开更多
文摘The interface excitation (IE) on intermolecular interface is a common concept connecting the glass transition (GT), macromolecular entan-glement (ME), and turbulence. IE has an addi-tional repulsion energy and extra vacancy vol-ume that result from the two neighboring molecules with antiparallel delocalization all in, e.g., the z-axial ground state of single-molecule instantaneous polarized dipole at GT. IEs only occur in the 8 orders of 2D IE loop-flows on lo-cal x-y projection plane. Theoretical proof of the 3.4 power law of ME viscosity reveals that (i) the delocalization mode of GT and solid-liquid tran-sition is solitary wave;wave- particle duality of solitary wave is ascribed to the equal probabili-ties between appearing and disappearing of IE loop-flow in inverse cascade and cascade mode;(ii) macromolecular chain-length in ME motion corresponds to Reynolds number in hydrody-namics;both the ME motion and the turbulent flow obey the same scale law. IE is not the ex-citation of dipole energy level at GT. However, when IEs are associated with the energy levels of instantaneous polarized dipole, we predict that the coherent structure formed by multilevel 8 orders of 2D IE loop-flows is the physical ori-gin of turbulence based on the universal ran-dom delocalization transition theory.
文摘A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and rearrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes’ mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the inherency maximum order-potential structure in random systems.