Accessing local dynamics within a single macromolecule is the key to understand the physical origin of the viscoelasticity and especially the glass transition. In order to extract specific information on the dynamics ...Accessing local dynamics within a single macromolecule is the key to understand the physical origin of the viscoelasticity and especially the glass transition. In order to extract specific information on the dynamics of the branch point of a star polymer around its glass transition temperature, four-arm star poly (n-butyl methacrylate) with a fluorescent core was synthesized using perylene diimide as initiator and polymerization conducted via atom transfer radical polymerization. The process is found to be effective in positioning the fluorophore at the branch point with the fluorophore intact, which allows the successful application of single molecule fluorescence defocus imaging in examining the local site- sensitive dynamics. The power spectra of rotation trajectories, the population of rotating fluorophores as well as the distribution of angular displacement were used to revel the difference in local dynamics between branch point and the arm's end. It is discovered that the local dynamics at the core of the star polymer is much less activated than that at the arm's end. The results demonstrate the strong effect dues to the topological constrain at the branch point and the more free space at the arm's end.展开更多
Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the...Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore,we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems.展开更多
By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree...By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree of branching(DB) through atom transfer radical self-condensing vinyl copolymerization(ATR-SCVCP) with Cu Br/2,2?-bipyridyl as the catalyst. The resulting HBCPS samples were used to investigate the effect of branching architecture on their glass transition behavior. With the DB increased, the glass transition temperatures(Tg) of HBCPS samples measured by DMA and DSC both decreased. Their spin-lattice relaxation times(1H T1r) of protons displayed the same downtrend with increasing DB. Besides, a correlation between the Tgs and the DB was well established by all-atom molecular dynamics(MD) simulations. The values of MD-determined Tgs are little higher than the corresponding experimental ones. However, the dependence of Tgs on DB is in good agreement with the experimental results, i.e., Tg decreases both in experiments and simulations with increasing DB.展开更多
基金supported by National Basic Research Program of China(No. 2014CB643601)
文摘Accessing local dynamics within a single macromolecule is the key to understand the physical origin of the viscoelasticity and especially the glass transition. In order to extract specific information on the dynamics of the branch point of a star polymer around its glass transition temperature, four-arm star poly (n-butyl methacrylate) with a fluorescent core was synthesized using perylene diimide as initiator and polymerization conducted via atom transfer radical polymerization. The process is found to be effective in positioning the fluorophore at the branch point with the fluorophore intact, which allows the successful application of single molecule fluorescence defocus imaging in examining the local site- sensitive dynamics. The power spectra of rotation trajectories, the population of rotating fluorophores as well as the distribution of angular displacement were used to revel the difference in local dynamics between branch point and the arm's end. It is discovered that the local dynamics at the core of the star polymer is much less activated than that at the arm's end. The results demonstrate the strong effect dues to the topological constrain at the branch point and the more free space at the arm's end.
基金supported by the National Natural Science Foundation of China(21474109,21674055)the International Partnership Program of Chinese Academy of Sciences(121522KYSB20160015)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2016204)
文摘Structural relaxation and glass transition in binary hard-spherical particle mixtures have been reported to exhibit unusual features depending on the size disparity and composition. However, the mechanism by which the mixing effects lead to these features and whether these features are universal for particles with anisotropic geometries remains unclear. Here, we employ event-driven molecular dynamics simulation to investigate the dynamical and structural properties of binary two-dimensional hard-ellipse mixtures. We find that the relaxation dynamics for translational degrees of freedom exhibit equivalent trends as those observed in binary hard-spherical mixtures. However, the glass transition densities for translational and rotational degrees of freedom present different dependencies on size disparity and composition. Furthermore,we propose a mechanism based on structural properties that explain the observed mixing effects and decoupling behavior between translational and rotational motions in binary hard-ellipse systems.
基金financially supported by the National Basic Research Program(Nos.2012CB821500 and 2013CB834506)the National Natural Science Foundation of China(Nos.9112704721174086 and 21274167)
文摘By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree of branching(DB) through atom transfer radical self-condensing vinyl copolymerization(ATR-SCVCP) with Cu Br/2,2?-bipyridyl as the catalyst. The resulting HBCPS samples were used to investigate the effect of branching architecture on their glass transition behavior. With the DB increased, the glass transition temperatures(Tg) of HBCPS samples measured by DMA and DSC both decreased. Their spin-lattice relaxation times(1H T1r) of protons displayed the same downtrend with increasing DB. Besides, a correlation between the Tgs and the DB was well established by all-atom molecular dynamics(MD) simulations. The values of MD-determined Tgs are little higher than the corresponding experimental ones. However, the dependence of Tgs on DB is in good agreement with the experimental results, i.e., Tg decreases both in experiments and simulations with increasing DB.