Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the avail...Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.展开更多
A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to furt...A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to further experiments. The investigation is accomplished by obtaining experimental data on the notched specimens of glass fiber reinforced plastics (GFRP) with edged notches under tension tension cyclic loading. The process of initiation and growth of fatigue damage near the notch root is measured by means of the optic system with a computer controlled display (CCD) camera. The experimental results show that the number of loading cycles required to initiate fatigue damage is governed by the stress field intensity.展开更多
Glass fibres/epoxy resins composites have been performed as ideal materials to make support instruments for high-energy and nuclear physics experiments. The effects of the 3,-ray irradiation on the fatigue strength, t...Glass fibres/epoxy resins composites have been performed as ideal materials to make support instruments for high-energy and nuclear physics experiments. The effects of the 3,-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites were investigated. And a two-parameter fatigue life model was established to predict the fatigue life of the composites. Results revealed that the y-ray irradiation could probably result in the degradation of epoxy resins, but hardly damage to the glass fibres. And the γ-ray irradiation treatment could significantly affect the fatigue strength of the composites at a low-cycle fatigue stage, but seldom influence at a high-cycle fatigue stage. Furthermore, the fabricated glass fibres/epoxy resins composites after the γ-ray irradiation still presented excellent fatigue strength, ideal thermal conductivities, remarkable dimensional and thermal stabilities, which can meet the actual requirements of normal operation for supporting instruments under high-energy and nuclear physics experiments.展开更多
Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear tr...Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear transition zones,leading to faster shear banding around the notches’root causing it to undergo severe plastic deformation.Furthermore,a qualitative investigation of the notched MGs demonstrates that fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.The fatigue performance of blunt notches is stronger than that of sharp notches.Making the notches blunter can improve the fatigue life of MGs.展开更多
Notch is a very important geometry with widespread applications in engineering structural components. Finding a universal equation to predict the effect of notch on strength of materials is of much significance for st...Notch is a very important geometry with widespread applications in engineering structural components. Finding a universal equation to predict the effect of notch on strength of materials is of much significance for structural design and materials selection. In the present work, we tried to find this universal equation from experimental results of metallic glasses (MGs) and other materials as well as theoretical derivations based on a universal fracture criterion (Qu and Zhang, Sci. Rep. 3 (2013) 1117). Experimental results showed that the notch effect of the studied MG was affected by the notch geometry characterized by the stress concentration factor Kt. As Kt becomes smaller, the notch strength ratio (NSR, which is the ratio of nominal ultimate tensile strength (UTS) of the notched sample to UTS of the unnotched sample) increases. By comparing MGs with other materials like brittle ceramics and ductile for ductile metals but smaller for brittle effect on strength of materials: NSR = equation was found to be consistent with crystalline metals, we find that when Kt is same, the NSR is larger ceramics. Theoretically, we derived a universal equation for notch M/Kt, where M is a constant related to materials. This universal the experimental results.展开更多
文摘Welding of high strength low alloy steels (HSLA) involves usage of low, even and high strength filler materials (electrodes) than the parent material depending on the application of the welded structures and the availability of the filler material. In the present investigation, the fatigue crack growth behaviour of weld metal (WM) and heat affected zone (HAZ) regions of under matched (UM), equal matched (EM) and over matched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) process has been used to fabricate the butt joints. Centre cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behaviour of the welded joints. Fatigue crack growth experiments have been conducted using servo hydraulic controlled fatigue testing machine at constant amplitude loading (R=0).A method has been proposed to predict the fatigue life of HSLA steel welds using fracture mechanics approach by incorporating influences of mismatch ratio (MMR) and notch location.
文摘A fatigue failure criterion for predicting the fatigue life of notched orthotropic fiber reinforced plasties (FRP) plates based on the concept of stress field intensity (SFI) near the notch root is subjected to further experiments. The investigation is accomplished by obtaining experimental data on the notched specimens of glass fiber reinforced plastics (GFRP) with edged notches under tension tension cyclic loading. The process of initiation and growth of fatigue damage near the notch root is measured by means of the optic system with a computer controlled display (CCD) camera. The experimental results show that the number of loading cycles required to initiate fatigue damage is governed by the stress field intensity.
基金financially supported by the National Natural Science Foundation of China (No. 51605025)the Major Program of National Key Research and Development Program of China (2016YFC0802905)+2 种基金the Fundamental Research Funds for the Central Universities (FRF-GF-17-B19)the BEPC great reconstruction projectthe Knowledge Innovation Fund of the Chinese Academy of Sciences, U-603 and U-34 (IHEP)
文摘Glass fibres/epoxy resins composites have been performed as ideal materials to make support instruments for high-energy and nuclear physics experiments. The effects of the 3,-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites were investigated. And a two-parameter fatigue life model was established to predict the fatigue life of the composites. Results revealed that the y-ray irradiation could probably result in the degradation of epoxy resins, but hardly damage to the glass fibres. And the γ-ray irradiation treatment could significantly affect the fatigue strength of the composites at a low-cycle fatigue stage, but seldom influence at a high-cycle fatigue stage. Furthermore, the fabricated glass fibres/epoxy resins composites after the γ-ray irradiation still presented excellent fatigue strength, ideal thermal conductivities, remarkable dimensional and thermal stabilities, which can meet the actual requirements of normal operation for supporting instruments under high-energy and nuclear physics experiments.
基金supported by the Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-01)the Fundamental Research Funds for the Central Universities(No.3072020CF0202)the Program for Innovative Research Team in China Earthquake Administration。
文摘Molecular dynamics simulation is performed to simulate the tension–compression fatigue of notched metallic glasses(MGs),and the notch effect of MGs is explored.The notches will accelerate the accumulation of shear transition zones,leading to faster shear banding around the notches’root causing it to undergo severe plastic deformation.Furthermore,a qualitative investigation of the notched MGs demonstrates that fatigue life gradually becomes shorter with the increase in sharpness until it reaches a critical scale.The fatigue performance of blunt notches is stronger than that of sharp notches.Making the notches blunter can improve the fatigue life of MGs.
基金financially supported by the National Natural Science Foundation of China under Grant Nos. 51331007 and 51301174
文摘Notch is a very important geometry with widespread applications in engineering structural components. Finding a universal equation to predict the effect of notch on strength of materials is of much significance for structural design and materials selection. In the present work, we tried to find this universal equation from experimental results of metallic glasses (MGs) and other materials as well as theoretical derivations based on a universal fracture criterion (Qu and Zhang, Sci. Rep. 3 (2013) 1117). Experimental results showed that the notch effect of the studied MG was affected by the notch geometry characterized by the stress concentration factor Kt. As Kt becomes smaller, the notch strength ratio (NSR, which is the ratio of nominal ultimate tensile strength (UTS) of the notched sample to UTS of the unnotched sample) increases. By comparing MGs with other materials like brittle ceramics and ductile for ductile metals but smaller for brittle effect on strength of materials: NSR = equation was found to be consistent with crystalline metals, we find that when Kt is same, the NSR is larger ceramics. Theoretically, we derived a universal equation for notch M/Kt, where M is a constant related to materials. This universal the experimental results.