In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental e...In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.展开更多
The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon n...The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.展开更多
Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bon...Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bone-mimicking level of mechanical properties, which is an essential demand of the targeted application. In this study, the nano-hydroxyapatite/polylactide composites were used as the matrix and continuous phosphate glass fibres (PGF) served as the major reinforcement to obtain the nano-HA/PGF/PLA hybrid composites. While the PGF volume fraction remained constant (25%), the nano-HA content (in weight) varied from 0% to 20%. As nano-HA loading increased, the flexural modulus of the composites increased from 8.70 ± 0.35 GPa to 14.97 ± 1.30 GPa, and the flexural strengths were enhanced from 236.31 ± 10.83 MPa to 310.55 ± 22.88 MPa. However, it is found that the degradation rates are higher with more nano-HA loaded. Enhanced water absorption ability, as well as increased voids in the composites is possible reasons for the accelerated degradation of composites with higher nano-HA loading. The hybrid composites possess mechanical properties that are superior to most of the HA/PLA composites in previous research while maintaining the biodegradability. With a proper loading of nano-HA in composites of 10 weight percent, the composites are also found with improved mechanical properties without catastrophic degradation. The composites developed in this study have great potential as biodegradable bone fixation device with enhanced load-bearing ability as confirmed and superior bioactivity as anticipated.展开更多
The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE univer...The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.展开更多
Hybrid composites are considered materials of great potential for engineering applications. One advantage of hybrid composite materials for the designer is that the properties of a composite can be controlled to a con...Hybrid composites are considered materials of great potential for engineering applications. One advantage of hybrid composite materials for the designer is that the properties of a composite can be controlled to a considerable extent by the choice of fibers and matrix and by adjusting the orientation of the fiber. The scope for this tailoring of the properties of the material is much greater, however, when different kinds of fiber orientations are incorporated in the same resin matrix. For the study of potential of these materials, in this work specimens were prepared with different angle ply ori entation of carbon/glass hybrid with epoxy resin as an adhesive. Three orientations viz 0°/90°, 45°/45° and 30°/60° were considered for studies. Mechanical properties such as tensile strength, tensile modulus, & peak load of the hybrid com posites were determined as per ASTM standards. Vacuum bagging technique was adopted for the fabrication of hybrid specimens. It was observed that angle ply orientation at 0°/90° showed significant increase in tensile properties as compared to other orientation. Scanning electron micrographs of fractured surfaces were used for a qualitative evaluation of interfacial properties of woven carbon-glass hybrid composites. These results indicated that carbon-glass hybrid composites offered the merits of synthetic fibers.展开更多
Novel carbon/glass hybrid thermoplastic composite rods having different carbon/glass ratios (24K1P,24K2P,and 24K3P) are commercially fabricated.The transverse compressive properties of these three hybrid rods were inv...Novel carbon/glass hybrid thermoplastic composite rods having different carbon/glass ratios (24K1P,24K2P,and 24K3P) are commercially fabricated.The transverse compressive properties of these three hybrid rods were investigated.The load-displacement curve showed large nonlinear behavior and a complicated shape.In the initial stage,the load gradually increased by increasing the deformation.In the second stage,the load-displacement relation was almost linearly proportional to the displacement (stable deformation region).Subsequently,the slope decreased slightly,before the load-displacement curve showed a clear slope increase as the deformation proceeded.The fracture behavior of the hybrid rods was examined using a digital microscope.The observed fracture paths formed almost straight lines running through the loading point,the center of the cross section of carbon fiber bundles/thermoplastic epoxy,as well as the interface between the glass fiber bundles/thermoplastic epoxy and the carbon fiber bundles/thermoplastic epoxy.展开更多
Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,wh...Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry.展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this stud...Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.展开更多
The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in...The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts.展开更多
Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride ...Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.展开更多
Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-ar...Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-aramid/epoxy hybrid braided composite laminates were produced and tested:(a)inter-hybrid laminates,(b)sandwich-like inter-hybrid laminates,and(c)unsymmetric-hybrid laminates.At the same time,carbon/epoxy braided composite laminates were used for comparisons.Impact properties and impact resistance were studied.Internal damages and damage mechanisms of laminates were detected by ultrasonic C-scan and B-scan methods.The results show that the ductility index(DI)values of three kinds of hybrid laminates aforementioned are 37%,4%and 120%higher than those of carbon/epoxy laminates,respectively.The peak load of inter-hybrid laminates is higher than that of sandwich-like inter-hybrid laminates and unsymmetric-hybrid laminates.The average damage area and dent depths of inter-hybrid laminates are 64%and 69%smaller than those of carbon/epoxy laminates.Those results show that carbon-aramid/epoxy hybrid braided composite laminates could significantly improve the impact properties and toughness of non-hybrid braided composite laminates.展开更多
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr...A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.展开更多
Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization proce...Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.展开更多
A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Micro...A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.展开更多
High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specif...High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specific modulus.However,their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure.In contrast,carbon fiber reinforced epoxy resin matrix composites(CFRP)have the characteristics of high modulus in the thickness direction and high shear resistance.However,carbon fibers are rarely used and applied for protection purposes.A hybridization with aramid fiber reinforced epoxy resin matrix composites(AFRP)and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites.The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated.Through conducting mechanical property tests and ballistic tests,two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software,respectively.The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced.The ballistic tests'results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7%of AFRP.When CFRP was on the striking face,the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage.The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process.These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt%and 30 wt%.展开更多
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金the Fundamental Research Grant Scheme(FRGS)1/2013/TK01/UPNM/01/2Universiti Pertahanan National Malaysia(UPNM)for supporting the research work
文摘In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.
基金Funded in Part by a Grant from Entropy Research Laboratories, San Francisco, California, USA
文摘The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.
文摘Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bone-mimicking level of mechanical properties, which is an essential demand of the targeted application. In this study, the nano-hydroxyapatite/polylactide composites were used as the matrix and continuous phosphate glass fibres (PGF) served as the major reinforcement to obtain the nano-HA/PGF/PLA hybrid composites. While the PGF volume fraction remained constant (25%), the nano-HA content (in weight) varied from 0% to 20%. As nano-HA loading increased, the flexural modulus of the composites increased from 8.70 ± 0.35 GPa to 14.97 ± 1.30 GPa, and the flexural strengths were enhanced from 236.31 ± 10.83 MPa to 310.55 ± 22.88 MPa. However, it is found that the degradation rates are higher with more nano-HA loaded. Enhanced water absorption ability, as well as increased voids in the composites is possible reasons for the accelerated degradation of composites with higher nano-HA loading. The hybrid composites possess mechanical properties that are superior to most of the HA/PLA composites in previous research while maintaining the biodegradability. With a proper loading of nano-HA in composites of 10 weight percent, the composites are also found with improved mechanical properties without catastrophic degradation. The composites developed in this study have great potential as biodegradable bone fixation device with enhanced load-bearing ability as confirmed and superior bioactivity as anticipated.
基金Tianjin Municipal Science and Technology Commission for the Financial Supports,China(No.11ZCKFSF00500)China's General Administration of Quality Supervision,Inspection and Quarantine for the Financial Supports,China(No.201210260)
文摘The effects of aramid/carbon on tensile properties of multilayered biaxial weft knitted( MBWK) fabric reinforced composites are analyzed by experiments. The tensile tests are inducted by the SHIMADZU AG-250 KNE universal material testing machine and Aramis V6 digital image correlation( DIC) technique.More specifically,the composite samples own four hybrid ratios(Na∶ Nc= 12∶ 0,8 ∶ 4,6 ∶ 6 and 4 ∶ 8). The results showed that the aramid/carbon hybrid MBWK fabric reinforced composites showed nearly linear response until reaching the maximum load and the inserting yarns distribution on the surface of MBWK fabrics reinforced composites had a great influence on the strain pattern distribution. Besides,the tensile strength,the tensile modulus and the elongation at breakage of 0° samples and 90° samples increased with the decreasing of aramid/carbon hybrid ratio. In a word,the changes of tensile strength, tensile modulus and elongation at breakage have a lot to do with the difference of aramid/carbon hybrid ratio.
文摘Hybrid composites are considered materials of great potential for engineering applications. One advantage of hybrid composite materials for the designer is that the properties of a composite can be controlled to a considerable extent by the choice of fibers and matrix and by adjusting the orientation of the fiber. The scope for this tailoring of the properties of the material is much greater, however, when different kinds of fiber orientations are incorporated in the same resin matrix. For the study of potential of these materials, in this work specimens were prepared with different angle ply ori entation of carbon/glass hybrid with epoxy resin as an adhesive. Three orientations viz 0°/90°, 45°/45° and 30°/60° were considered for studies. Mechanical properties such as tensile strength, tensile modulus, & peak load of the hybrid com posites were determined as per ASTM standards. Vacuum bagging technique was adopted for the fabrication of hybrid specimens. It was observed that angle ply orientation at 0°/90° showed significant increase in tensile properties as compared to other orientation. Scanning electron micrographs of fractured surfaces were used for a qualitative evaluation of interfacial properties of woven carbon-glass hybrid composites. These results indicated that carbon-glass hybrid composites offered the merits of synthetic fibers.
文摘Novel carbon/glass hybrid thermoplastic composite rods having different carbon/glass ratios (24K1P,24K2P,and 24K3P) are commercially fabricated.The transverse compressive properties of these three hybrid rods were investigated.The load-displacement curve showed large nonlinear behavior and a complicated shape.In the initial stage,the load gradually increased by increasing the deformation.In the second stage,the load-displacement relation was almost linearly proportional to the displacement (stable deformation region).Subsequently,the slope decreased slightly,before the load-displacement curve showed a clear slope increase as the deformation proceeded.The fracture behavior of the hybrid rods was examined using a digital microscope.The observed fracture paths formed almost straight lines running through the loading point,the center of the cross section of carbon fiber bundles/thermoplastic epoxy,as well as the interface between the glass fiber bundles/thermoplastic epoxy and the carbon fiber bundles/thermoplastic epoxy.
文摘Composite materials may be composed of several types of fiber and resin.The design of hybrid composites intends to improve the physico-mechanical properties of this kind of materials,compared to standard composites,which consist of epoxy resin matrixes and carbon fibers,which presents low impact resistance.Our goal was the development and characterization of a hybrid material composed of two kinds of fibers,carbon and Kevlar,in the fabric format,joined by epoxy resin matrix.The standard composition is the Composition 1:containing 55%-60%carbon fiber and 40%-45%epoxy resin.The hybrid composite is the Composition 2:that contains 30%-33%carbon fiber,25%-27%Kevlar fiber and 40%-45%of epoxy resin.The composite plates were prepared using a laminator machine and later they were process in a vacuum bag and cured in oven.The study aimed at comparing the physical and mechanical properties of these materials.The mechanical tests were focus on measurements of the tensile,flexural and impact charpy stresses,and physics tests by measures of bulk densities.Through these procedures,we hope to find out data that may be useful for a partial characterization of these products for applications in the aerospace industry.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
文摘Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.
文摘The aim of this study was to optimize the geometry and the design of metallic/composite single bolted joints subjected to tension-compression loading. For this purpose, it was necessary to evaluate the stress state in each component of the bolted join. The multi-material assembly was based on the principle of double lap bolted joint. It was composed of a symmetrical balanced woven glass-epoxy composite material plate fastened to two stainless sheets using a stainless pre-stressed bolt. In order to optimize the design and the geometry of the assembly, ten configurations were proposed and studied: a classical simple bolted joint, two joints with an insert (a BigHead<sup>R</sup> insert and a stair one) embedded in the composite, two “waved” solutions, three symmetrical configurations composed of a succession of metallic and composites layers, without a sleeve, with one and with two sleeves, and two non-symmetrical constituted of metallic and composites layers associated with a stair-insert (one with a sleeve and one without). A tridimensional Finite Element Method (FEM) was used to model each configuration mentioned above. The FE models taked into account the different materials, the effects of contact between the different sheets of the assembly and the pre-stress in the bolt. The stress state was analyzed in the composite part. The concept of stress concentration factor was used in order to evaluate the stress increase in the highly stressed regions and to compare the ten configurations studied. For this purpose, three stress concentration factors were defined: one for a monotonic loading in tension, another for a monotonic loading in compression, and the third for a tension-compression cyclic loading. The results of the FEM computations showed that the use of alternative metallic and composite layers associated with two sleeves gived low values of stress concentration factors, smaller than 1.4. In this case, there was no contact between the bolt and the composite part and the most stressed region was not the vicinity of the hole but the end of the longest layers of the metallic inserts.
文摘Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.
基金National Natural Science Foundation of China(No.11102133)Tianjin National Natural Science Foundation,China(No.19JCYBJC18300)。
文摘Low-velocity impact and in-plane axial compression after impact(CAI)behaviors of carbon-aramid/epoxy hybrid braided composite laminates were investigated experimentally.The following three different types of carbon-aramid/epoxy hybrid braided composite laminates were produced and tested:(a)inter-hybrid laminates,(b)sandwich-like inter-hybrid laminates,and(c)unsymmetric-hybrid laminates.At the same time,carbon/epoxy braided composite laminates were used for comparisons.Impact properties and impact resistance were studied.Internal damages and damage mechanisms of laminates were detected by ultrasonic C-scan and B-scan methods.The results show that the ductility index(DI)values of three kinds of hybrid laminates aforementioned are 37%,4%and 120%higher than those of carbon/epoxy laminates,respectively.The peak load of inter-hybrid laminates is higher than that of sandwich-like inter-hybrid laminates and unsymmetric-hybrid laminates.The average damage area and dent depths of inter-hybrid laminates are 64%and 69%smaller than those of carbon/epoxy laminates.Those results show that carbon-aramid/epoxy hybrid braided composite laminates could significantly improve the impact properties and toughness of non-hybrid braided composite laminates.
文摘A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.
文摘Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.
文摘A comparative study on the surface properties of Al-SiC-multi walled carbon nanotubes (CNT) and Al-SiC-graphene nanoplatelets (GNP) hybrid composites fabricated via friction stir processing (FSP) was documented. Microstructural characterization reveals a more homogeneous dispersion of GNPs in the Al matrix as compared to CNTs. Dislocation blockade by SiC and GNP particles along with the defect-free interface between the matrix and reinforcements is also observed. Nanoindentation study reveals a remarkable ~207% and ~27% increment in surface nano-hardness of Al-SiC-GNP and Al-SiC-CNT hybrid composite compared to as-received Al6061 alloy, respectively. On the other hand, the microhardness values of Al-SiC-GNP and Al-SiC-CNT are increased by ~36% and ~17% relative to as-received Al6061 alloy, respectively. Tribological assessment reveals ~56% decrease in the specific wear rate of Al-SiC-GNP hybrid composite, whereas it is increased by ~122% in Al-SiC-CNT composite. The higher strength of Al-SiC-GNP composite is attributed to the mechanical exfoliation of GNPs to few layered graphene (FLG) in the presence of SiC. Also, various mechanisms such as thermal mismatch, grain refinement, and Orowan looping contribute significantly towards the strengthening of composites. Moreover, the formation of tribolayer by the squeezed-out GNP on the surface is responsible for the improved tribological performance of the composites. Raman spectroscopy and various other characterization methods corroborate the results.
文摘High-performance ballistic fibers,such as aramid fiber and ultra-high-molecular-weight polyethylene(UHMWPE),are commonly used in anti-ballistic structures due to their low density,high tensile strength and high specific modulus.However,their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure.In contrast,carbon fiber reinforced epoxy resin matrix composites(CFRP)have the characteristics of high modulus in the thickness direction and high shear resistance.However,carbon fibers are rarely used and applied for protection purposes.A hybridization with aramid fiber reinforced epoxy resin matrix composites(AFRP)and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites.The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated.Through conducting mechanical property tests and ballistic tests,two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software,respectively.The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced.The ballistic tests'results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7%of AFRP.When CFRP was on the striking face,the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage.The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process.These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt%and 30 wt%.