A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud...A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.展开更多
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu...Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.展开更多
Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this...Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44.展开更多
Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.T...Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.展开更多
The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indente...The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth展开更多
BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical prope...BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical properties of the composites was investigated. The results show that the transformation promoted by adding celsian seeds is retarded in the composite by the presence of SiC whisker. SiC whisker has a good effect of improving the mechanical properties of BAS glass ceramic matrix. The toughening mechanisms are crack deflection and whisker fracture. The strengthening mechanism is loading transition. The amorphous phase at SiC W/BAS matrix interface damages the fracture toughness and high temperature strength of the composites.展开更多
The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag(NS) and blast furnace slag(BFS) with a small amount of quartz sand was investigated.A modified melting method which ...The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag(NS) and blast furnace slag(BFS) with a small amount of quartz sand was investigated.A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process.The results show that the iron-rich system has much lower melting temperature,glass transition temperature(Tg),and glass crystallization temperature(Tc),which can result in a further energy-saving process.The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C.The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample.The crystallization process can be completed in a few minutes.A distinct boundary between the crystallized part and the non-crystallized part exists during the process.In the non-crystallized part showing a black colour,some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to Tc.In the crystallized part showing a khaki colour,a compact structure is formed by augite crystals.展开更多
A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China wer...A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.展开更多
The effect of TiO2 on the crystallization behaviors of the glass ceramics prepared from granite tailings was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission sca...The effect of TiO2 on the crystallization behaviors of the glass ceramics prepared from granite tailings was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results showed that the crystallization peak temperature decreased firstly, and then increased with the increase of TiO2 content. The optimum addition amount of TiO2 was 8 wt%. With a single-step heat treatment at 924 ℃ for I h, augite precipitated as the only crystalline phase both on the surface and in the interior. The avrami parameter of the sample was 3.25, suggesting a two- dimensional crystallization mechanism. The activation energies for phase separation and crystallization of augite were 321.75 and 698.83 kJ/mol, respectively.展开更多
By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the ...By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.展开更多
Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is eff...Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is efficient in the study of the glass-ceramics structure. There is a " Boron abnormality" in the system which has an important influence on the properties of the glass-ceramics.展开更多
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, th...Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.展开更多
A study has been carried out on the feasibility of using high iron content wastes, generated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in di...A study has been carried out on the feasibility of using high iron content wastes, generated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in different proportions with soda-lime glass cullet and sand. The devitrification of the parent glasses produced from the different mixtures was investigated using differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The mechanical properties of the glass-ceramic were assessed by hardness and indentation fracture toughness measurement. A glass ceramic with mixture of 60 wt pct iron-rich wastes, 25 wt pct sand, and 15 wt pct glass cullet exhibited the best combination of properties, namely, hardness 7.9 CPa and fracture toughness 3.75 MPa·m^1/2, for the sake of containing magnetite in marked dendritic morphology. These new hard glass ceramics are candidate materials for wear resistant tiles and paving for heavy industrial floors.展开更多
Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foami...Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.展开更多
This study investigated the level of natural radioactivity and radiological risks of 40 different ceramic tiles through gamma-ray spectroscopy using a high-purity germanium detector. The calculated activity concentrat...This study investigated the level of natural radioactivity and radiological risks of 40 different ceramic tiles through gamma-ray spectroscopy using a high-purity germanium detector. The calculated activity concentrations were evaluated to determine their potential radiological risks to human health. Furthermore, the activity concentrations were subjected to the RESRAD-BUILD computer code to assess the effect of ventilation rate, dweller position, and room size and direction on the total effective dose(TED). The simulated TED received by a receptor when changing the ventilation rate in a room ranged from0.26 ± 0.01 to 0.61 ± 0.01 mSv/y; however,the percentage variations in the TED due to dweller position and room size are 34, 31,and 35% and 33, 27, and 40% for the x-,y-,and z-directions, respectively. The overall TED received by the dweller based on room size and direction is 0.75 mSv/y. The calculated radiological risk parameters were all below the recommended maximum limit. However, the TED received by the dweller is significantly affected by the directions of the measurement, position,room size,and ventilation. Therefore,estimating the TED from one direction would underestimate the total dose received by the dweller.展开更多
Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wolla...Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
In the present research, the effect of CeO2 dopant on the fabrication of transparent lithium aluminosilicate titanate (LAST) glass ceramics was investigated. Nanocrystallineβ-quartz solid solution (s.s.) was obse...In the present research, the effect of CeO2 dopant on the fabrication of transparent lithium aluminosilicate titanate (LAST) glass ceramics was investigated. Nanocrystallineβ-quartz solid solution (s.s.) was observed to be the main phase crystallized in this system. Com-parable refractive indices of the glassy matrix andβ-quartz s.s., as well as the incorporation of very fine grains size were determined as the main reasons for retaining the transparency of the glass ceramics. CeO2 was introduced as a suitable optical agent, playing a role as a network modifier in the glass ceramics, because it does not accelerate the growth process and retards the extended growth of crystals. Optical investi-gations indicate that the Fermi energy level, direct and indirect band gaps, and Urbach energy decrease with increasing nanocrystal content in the glassy matrix of specimens, which can be related to the expansion of conduction band, the enhancement of ionic bonds in the crystal lat-tice, and the enhancement of structural arrangement degree, respectively.展开更多
基金This study is supported by the National Key Research and Development Program of China(No.2022YFB2807405)the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects(No.QCYRCXM-2022-40)+2 种基金the National Natural Science Foundation of China(Nos.U2341263 and 62371366)Open project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050246)Innovation Capability Support Program of Shaanxi,China(Nos.2023-CX-PT-30 and 2022TD-28).
文摘A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
基金supported by the National Key R&D Program of China(No.2019YFC1905701)the National Natural Science Foundation of China(Nos.U1960201 and 52204336)the China Postdoctoral Science Foundation(No.2022M710359).
文摘Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.
基金funded by the Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project ofKey Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44.
文摘Research conducted on ceramic materials has been investigating the incorporation of solid waste into their formulations,driven by the proper disposal of such waste and the reduction of negative environmental impacts.This study analyzed the effects of adding aluminum powder residue to the physical properties of ceramic masses with the aim of obtaining new formulations for ceramic tiles.The aluminum residue and the standard mass for ceramic tile production were chemically characterized and homogenized to obtain new formulations with the incorporation of 4%,6%,8%,and 10%aluminum powder in the ceramic mass.The specimens were uniaxially pressed and sintered at a temperature of 1,200°C for 2 h,undergoing three different temperatures(100°C,400°C,and 650°C)for 30 min each.They were evaluated for WA(water absorption),RLq(linear shrinkage),SEM(scanning electron microscopy),and TRF(flexural strength)modulus.The results demonstrate that the addition of aluminum powder residue is feasible in the proposed formulations(4%,6%,8%,and 10%),as they enhance the mechanical properties of the ceramics compared to the formulation with 0%residue,at a sintering temperature of 1,200°C.
基金supported by the National Natural Science Foundation of China (No.50905086)China Postdoctoral Science Foundation (No.200904501095)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds (No.0901035C)NUAA Research Funding (No.NS2010134)
文摘The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth
文摘BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical properties of the composites was investigated. The results show that the transformation promoted by adding celsian seeds is retarded in the composite by the presence of SiC whisker. SiC whisker has a good effect of improving the mechanical properties of BAS glass ceramic matrix. The toughening mechanisms are crack deflection and whisker fracture. The strengthening mechanism is loading transition. The amorphous phase at SiC W/BAS matrix interface damages the fracture toughness and high temperature strength of the composites.
文摘The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag(NS) and blast furnace slag(BFS) with a small amount of quartz sand was investigated.A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process.The results show that the iron-rich system has much lower melting temperature,glass transition temperature(Tg),and glass crystallization temperature(Tc),which can result in a further energy-saving process.The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C.The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample.The crystallization process can be completed in a few minutes.A distinct boundary between the crystallized part and the non-crystallized part exists during the process.In the non-crystallized part showing a black colour,some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to Tc.In the crystallized part showing a khaki colour,a compact structure is formed by augite crystals.
基金Item Sponsored by National Natural Science Foundation of China (50204005 ,50374029)
文摘A great amount of ferrous tailings and slag cause severe damage to the ecological environment, which must be reclaimed and utilized. The composition, type, and characteristics of ferrous tailings and slag in China were introduced. The research status and the application outlook of glass ceramics made from ferrous tailings and slag were discussed. Glass ceramics made from ferrous tailings and slag can be applied to various fields, and it will be environmentally conscious materials in the 21st century.
基金Funded by the National Key Technology Support Program of China(No.2012BAA10B03)Hubei Provincial Science and Technology Department,China(No.2012BAA1001)
文摘The effect of TiO2 on the crystallization behaviors of the glass ceramics prepared from granite tailings was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The results showed that the crystallization peak temperature decreased firstly, and then increased with the increase of TiO2 content. The optimum addition amount of TiO2 was 8 wt%. With a single-step heat treatment at 924 ℃ for I h, augite precipitated as the only crystalline phase both on the surface and in the interior. The avrami parameter of the sample was 3.25, suggesting a two- dimensional crystallization mechanism. The activation energies for phase separation and crystallization of augite were 321.75 and 698.83 kJ/mol, respectively.
基金supported by the Science and Technology Department of Zhejiang Province (2006C14010)the Chinese-French Cooperation Programs (MX 07-01)
文摘By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.
文摘Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is efficient in the study of the glass-ceramics structure. There is a " Boron abnormality" in the system which has an important influence on the properties of the glass-ceramics.
文摘Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.
文摘A study has been carried out on the feasibility of using high iron content wastes, generated during steel making, as a raw material for the production of glass ceramic. The iron-rich wastes were mixed and melted in different proportions with soda-lime glass cullet and sand. The devitrification of the parent glasses produced from the different mixtures was investigated using differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The mechanical properties of the glass-ceramic were assessed by hardness and indentation fracture toughness measurement. A glass ceramic with mixture of 60 wt pct iron-rich wastes, 25 wt pct sand, and 15 wt pct glass cullet exhibited the best combination of properties, namely, hardness 7.9 CPa and fracture toughness 3.75 MPa·m^1/2, for the sake of containing magnetite in marked dendritic morphology. These new hard glass ceramics are candidate materials for wear resistant tiles and paving for heavy industrial floors.
基金the National key R&D projects(Nos.2019YFC1907101,2019YFC1907103,2017YFB0702304)the Key R&D project in Ningxia Hui Autonomous Region(No.2020BCE01001)+5 种基金the National Natural Science Foundation of China(No.51672024)the Xijiang Innovation and Entrepreneurship Team(No.2017A0109004)the Program of China Scholarships Coun-cil(No.201806465040)the Fundamental Research Funds for the Central Universities(Nos.FRF-IC-19-007,FRF-IC-19-017Z,FRF-MP-19-002,FRF-TP-19-003B1,FRF-GF-19-032B,and 06500141)the State Key Laboratory for Ad-vanced Metals and Materials(No.2019Z-05)the Integ-ration of Green Key Process Systems MIIT.
文摘Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.
基金supported by the Universiti Kebangsaan Malaysia(UKM)under Grant Number GGPM-2017-084
文摘This study investigated the level of natural radioactivity and radiological risks of 40 different ceramic tiles through gamma-ray spectroscopy using a high-purity germanium detector. The calculated activity concentrations were evaluated to determine their potential radiological risks to human health. Furthermore, the activity concentrations were subjected to the RESRAD-BUILD computer code to assess the effect of ventilation rate, dweller position, and room size and direction on the total effective dose(TED). The simulated TED received by a receptor when changing the ventilation rate in a room ranged from0.26 ± 0.01 to 0.61 ± 0.01 mSv/y; however,the percentage variations in the TED due to dweller position and room size are 34, 31,and 35% and 33, 27, and 40% for the x-,y-,and z-directions, respectively. The overall TED received by the dweller based on room size and direction is 0.75 mSv/y. The calculated radiological risk parameters were all below the recommended maximum limit. However, the TED received by the dweller is significantly affected by the directions of the measurement, position,room size,and ventilation. Therefore,estimating the TED from one direction would underestimate the total dose received by the dweller.
基金Project(51308086)supported by the National Natural Science Foundation of ChinaProject(LJQ2015020)supported by the Program for Liaoning Excellent Talents in University,ChinaProject(2016RQ051)supported by the Program of Science-Technology Star for Young Scholars by the Dalian Municipality,China
文摘Wollastonite glass ceramics were prepared using the reactive crystallization sintering method by mixing waste glass powders with gehlenite.The crystallization property,thermodynamics,and kinetics of the prepared wollastonite glass ceramics were determined by X-ray diffraction analysis,scanning electron microscopy,energy-dispersive spectroscopy,high-resolution transmission electron microscopy,and differential thermal analysis.Results showed that crystals of wollastonite and alumina could be found in the gehlenite through its reaction with silicon dioxide.The wollastonite crystals showed a lath shape with a certain length-to-diameter ratio.The crystals exhibited excellent bridging and reinforcing effects.In the crystallization process,the aluminum ions in gehlenite diffused into the glass and the silicon ions in the glass diffused into gehlenite.Consequently,the three-dimensional frame structure of gehlenite was partially damaged to form a chain-like wollastonite.The results of crystallization thermodynamics and kinetics indicated that crystallization reaction could occur spontaneously under a low temperature(1173 K),with 20 wt%gehlenite added as the reactive crystallization promoter.The crystallization activation energy was evaluated as 261.99 kJ/mol by using the Kissinger method.The compression strength of the wollastonite glass ceramic samples(7.5 cm×7.5 cm)reached 251 MPa.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
文摘In the present research, the effect of CeO2 dopant on the fabrication of transparent lithium aluminosilicate titanate (LAST) glass ceramics was investigated. Nanocrystallineβ-quartz solid solution (s.s.) was observed to be the main phase crystallized in this system. Com-parable refractive indices of the glassy matrix andβ-quartz s.s., as well as the incorporation of very fine grains size were determined as the main reasons for retaining the transparency of the glass ceramics. CeO2 was introduced as a suitable optical agent, playing a role as a network modifier in the glass ceramics, because it does not accelerate the growth process and retards the extended growth of crystals. Optical investi-gations indicate that the Fermi energy level, direct and indirect band gaps, and Urbach energy decrease with increasing nanocrystal content in the glassy matrix of specimens, which can be related to the expansion of conduction band, the enhancement of ionic bonds in the crystal lat-tice, and the enhancement of structural arrangement degree, respectively.