Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the micros...Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060℃. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength(16.64 MPa) among the investigated samples and a relatively low bulk density(0.83 g/cm^3), were attained in the case of the foamed glass-ceramics sintered at 1000℃.展开更多
The solidification microstructures and solute segregation of a newly developed hot corrosion resistant single-crystal Ni-base superalloy were investigated with a zone-melting and ultra-high thermal gradient unidirecti...The solidification microstructures and solute segregation of a newly developed hot corrosion resistant single-crystal Ni-base superalloy were investigated with a zone-melting and ultra-high thermal gradient unidirectional solidification apparatus.Compared with the microstructures solidified at conventional low thermal gradient conditions,the dendrite arm spacings,the interdendritic microporosity and γ/γ' eutectic,and the severity of solute segregation of the single-crystal superalloy solidified at ultra-high thermal gradient conditions were considerably reduced.It was shown that the microstructure solidified under ultra-high thermal gradient condition is ideal for the full exploitation of the excellent property potentials of single-crystal superalloys.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle w...During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.展开更多
Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was ...Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was carried out,for obtaining relationship between microstructure and mechanical properties of joint. The results showed that the joint contained bonding zone and base metal. The diffusion zone was obviously observed. When it was not finished for isothermal solidification process,the bonding zone would contain isothermal solidification zone and rapid solidification zone. Metallographic examination revealed that isothermal solidification zone was consisted of γ and γ' phase. Rapid solidification zone was consisted of two different structures,which were ternary eutectic of borides,γ and γ' phase developing at the edge of joint,binary eutectic of γ and γ' phase appearing in the portion of joint. When it was not enough for homogenization process under the condition of finishing isothermal solidification process,the bonding zone would contain isothermal solidification zone and borides at the interface. Under the conditions of relatively high welding temperature and long welding time,average tensile strength of joint was equivalent to that of parent material.展开更多
The microstructure of CaO-P_2O_5-SiO_2-MgO-F^- glass-ceramics duringcrystallization were investigated and the crystallized phases were identified with DTA (DifferentialThermal Analysis), SEM (Scanning Electron Microsc...The microstructure of CaO-P_2O_5-SiO_2-MgO-F^- glass-ceramics duringcrystallization were investigated and the crystallized phases were identified with DTA (DifferentialThermal Analysis), SEM (Scanning Electron Microscope) and XRD (X- ray Diffraction) techniques. Themechanical properties such as bending strength and fracture toughness, as well as their changes withadvancing crystallization were determined. The results show that the changes of the mechanicalproperties are correlated with the microstructures. The sample heated up to 810 deg C and soaked for4 h has smaller crystalline size and less volum fraction of fluorophlogopite, so it has higherbending strength (about 190 MPa), and higher crack toughness (about 2.63 MPa centre dot m^1/2).展开更多
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic...The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.展开更多
Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on...Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.展开更多
The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the ...The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.展开更多
An investigation was carried out to study the effects of γ' formation and strengthening elements (Al, Ti and Ta) on the microstructure and stress rupture properties of nickel base single crystal super-alloys.The ...An investigation was carried out to study the effects of γ' formation and strengthening elements (Al, Ti and Ta) on the microstructure and stress rupture properties of nickel base single crystal super-alloys.The results show that with the increase of γ' formation and strengthening elements, the percentage of γ-γ' eutectic and the misfit degree of γ/γ' increases.Detailed microstructural analysis revealed that with the increase of γ' forming element content, the morphology of γ' changed from spherical to cubic, then irregular shape; and the size of γ' increases gradually.Excessive γ' formation and strengthening elements will lead to the precipitation of μ phase during stress rupture tests.The alloy with 5wt.%Al, 1wt.%Ti and 6wt.%Ta has the best stress rupture property.展开更多
Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites wer...Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.展开更多
The influence of microstructure stability on the creep properties of single crystal nickel-based superalloys was investigated by means of the measurement of the creep curves and microstructure observation. Results sho...The influence of microstructure stability on the creep properties of single crystal nickel-based superalloys was investigated by means of the measurement of the creep curves and microstructure observation. Results show that the superalloy with 4%(mass fraction)W in Ni-Al-Cr-Ta-Co-5.5%Mo-x%W systems displays a better microstructure stability, but theμphase is precipitated in the superalloy with 6% W during aging. The strip-likeμphase is precipitated to be parallel or perpendicular to each other along the <110> orientation, and grown into the slice-like morphology along the {111} planes. The superalloy with 4%W displays a better creep rupture lifetime under the applied stress of 200 MPa at 982℃, but the creep lifetime of alloy is obviously decreased with the increase of the element W content up to 6%. The fact that theμphase is precipitated in the superalloy with 6% W during applied stress and unstress aging results in the appearance of the poor regions for the refractory elements. This is one of the main reasons for reducing the creep rupture lifetime of the superalloy.展开更多
The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a l...The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a lot of t--ZrO2 particles precipitate from ZrO2-mica glass-ceramics. The ZrO2 particles can effectively limit the growth of mica crystal and benefit the mechanical properties of glass-ceramics.展开更多
The phase transformation of R2O-CaO-SiO2-F system glass-ceramics with various additions of K2O and F was investigated by DTA, XRD, SEM and other techniques. The crystallization and the microstructure of the obtained g...The phase transformation of R2O-CaO-SiO2-F system glass-ceramics with various additions of K2O and F was investigated by DTA, XRD, SEM and other techniques. The crystallization and the microstructure of the obtained glass-ceramics were also evaluated. The phase separation occurred in CN1 specimen after being quenched in water, but phase separation did not appear in other quenched specimens with the content of K2O and F increasing obviously, showing K2O and F modified the structure of the glass-forming melts. The increase of K2O and F resulted in the reduction of phase separation and the enhancement of crystallization. The main crystalline phase formed after heat-treatment was canasite and CaF2. The microstructures of the crystalline specimens consisted of interlocking radial and granular crystals. Moreover, the crystallinity was increased as the content of K2O was increased from 0.07 mol to 0.08 mol.展开更多
Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel ...Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys.展开更多
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO...The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.展开更多
The microstructures of platinum (111) facets were studied by reflection electron microscopy, and the features on facets, for example, growth steps, slip steps, and dislocations emerging through the surfaces, etc., wer...The microstructures of platinum (111) facets were studied by reflection electron microscopy, and the features on facets, for example, growth steps, slip steps, and dislocations emerging through the surfaces, etc., were analysed. In the following annealing at about 1100°C for 1 h in the atmosphere, the migration of crystal surface atoms resulted in the transformation of stepped configuration on (111) facets. Differently high and sized 〈111〉 terraces or small planes distributed on facets constructed frustum structures.展开更多
By means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the microstructures of as-cast and heat-treated Mg--4Zn-IY ...By means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the microstructures of as-cast and heat-treated Mg--4Zn-IY (wt%) alloy containing quasi-crystal phase were studied. The microstructure of the as-cast alloy consists of a-Mg solid solution grains, intermetallic particles and eutectic phases (W-phase and 1-phase), and huge grains with seri- ous dendritic segregation are clearly observed. After heat treatment, phase transformation and dissolution occur in the alloy and many phases remain. When the alloy was treated above 410 ~C, the eutectic phases transform into spherical shape as the I-phase turns to W-phase. After heat treatment for long time, the alloy is over burnt and the W-phase decomposes to Mg-Y binary phase.展开更多
The synthesis and characterization of meso-tetra (4-n-lauroyloxy phenyl) porphyrin with long ester chains are reported. The domains of stability and the structure of the liquid crystalline phases are determined by opt...The synthesis and characterization of meso-tetra (4-n-lauroyloxy phenyl) porphyrin with long ester chains are reported. The domains of stability and the structure of the liquid crystalline phases are determined by optical microscopy and differential scanning calorimerials (DSC).展开更多
基金financially supported by the Science and Technology Support Program of Sichuan Province (No.2014GZ0011)the Industry Promotion Project of Panzhihua City, China (No.2012CY-C-2)
文摘Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature(900–1060℃) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060℃. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength(16.64 MPa) among the investigated samples and a relatively low bulk density(0.83 g/cm^3), were attained in the case of the foamed glass-ceramics sintered at 1000℃.
文摘The solidification microstructures and solute segregation of a newly developed hot corrosion resistant single-crystal Ni-base superalloy were investigated with a zone-melting and ultra-high thermal gradient unidirectional solidification apparatus.Compared with the microstructures solidified at conventional low thermal gradient conditions,the dendrite arm spacings,the interdendritic microporosity and γ/γ' eutectic,and the severity of solute segregation of the single-crystal superalloy solidified at ultra-high thermal gradient conditions were considerably reduced.It was shown that the microstructure solidified under ultra-high thermal gradient condition is ideal for the full exploitation of the excellent property potentials of single-crystal superalloys.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
基金supported by National Natural Science Foundation of China (No.50574083)
文摘During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.
文摘Microstructure of transient liquid phase( TLP) diffusion bonded a third generation single crystal superalloy joint was investigated using scanning electron microscopy( SEM),and mechanical properties test of joint was carried out,for obtaining relationship between microstructure and mechanical properties of joint. The results showed that the joint contained bonding zone and base metal. The diffusion zone was obviously observed. When it was not finished for isothermal solidification process,the bonding zone would contain isothermal solidification zone and rapid solidification zone. Metallographic examination revealed that isothermal solidification zone was consisted of γ and γ' phase. Rapid solidification zone was consisted of two different structures,which were ternary eutectic of borides,γ and γ' phase developing at the edge of joint,binary eutectic of γ and γ' phase appearing in the portion of joint. When it was not enough for homogenization process under the condition of finishing isothermal solidification process,the bonding zone would contain isothermal solidification zone and borides at the interface. Under the conditions of relatively high welding temperature and long welding time,average tensile strength of joint was equivalent to that of parent material.
文摘The microstructure of CaO-P_2O_5-SiO_2-MgO-F^- glass-ceramics duringcrystallization were investigated and the crystallized phases were identified with DTA (DifferentialThermal Analysis), SEM (Scanning Electron Microscope) and XRD (X- ray Diffraction) techniques. Themechanical properties such as bending strength and fracture toughness, as well as their changes withadvancing crystallization were determined. The results show that the changes of the mechanicalproperties are correlated with the microstructures. The sample heated up to 810 deg C and soaked for4 h has smaller crystalline size and less volum fraction of fluorophlogopite, so it has higherbending strength (about 190 MPa), and higher crack toughness (about 2.63 MPa centre dot m^1/2).
文摘The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress.
文摘Two experimental single crystal superalloys with 2% Cr and 4% Cr (mass fraction) were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Cr content on the microstructure, phase stability, tensile properties at 1100 °C and stress rupture properties at 1070 °C and 160 MPa of the single crystal superalloy were investigated. The results show that the size ofγ′ phase particles become small and uniform, and the cubic shape turns a little regular with the increase of Cr content. Theγ′ directional coarsening and rafting were observed in the 2% Cr and 4% Cr alloys after long term aging (LTA) at 1100 °C. The rafting rate ofγ′ phase increased with increasing Cr content. Needle-shaped topologically close packed (TCP) phases precipitated and grew along fixed direction in both alloys. The precipitating rate and volume fraction of TCP phases significantly increased with the increase of Cr content. The tensile property of the alloy increased and the stress rupture properties of the alloy decreased with the increase of Cr content at high temperature. The increase of Cr content increased the partition ratio of TCP forming elements, Re, W, and Mo, and the saturation degrees of these elements inγ phases increased. Therefore, the high temperature phase stability of the alloy decreased with the increase of Cr content.
基金Project(51375503)supported by the National Natural Science Foundation of China
文摘The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.
文摘An investigation was carried out to study the effects of γ' formation and strengthening elements (Al, Ti and Ta) on the microstructure and stress rupture properties of nickel base single crystal super-alloys.The results show that with the increase of γ' formation and strengthening elements, the percentage of γ-γ' eutectic and the misfit degree of γ/γ' increases.Detailed microstructural analysis revealed that with the increase of γ' forming element content, the morphology of γ' changed from spherical to cubic, then irregular shape; and the size of γ' increases gradually.Excessive γ' formation and strengthening elements will lead to the precipitation of μ phase during stress rupture tests.The alloy with 5wt.%Al, 1wt.%Ti and 6wt.%Ta has the best stress rupture property.
文摘Nanocrystalline TiO2 was prepared by high frequency plasma chemical vapor deposition (HF-PCVD). The effects of additive AlCl3 on crystal phase, particle size and microstructurai parameters of TiO2 nanocrystallites were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The nanocrystallites obtained experimentally are mixture of anatase and rutile, the uniform diameters of particles are about 30 nm. The phase transformation from anatase to rutile was accelerated by AlCl3, and rutile content is increased from 26.7 wt pct to 53.6 wt pct with increasing of addition of AlCl3 from 0.0 wt pct to 5.0 wt pct. The particle size is reduced and the size distribution becomes very narrow. The crystal lattice constants have the trend to decrease, and celi volumes appear as shrinkable.
基金Project (50571070) supported by the National Natural Science Foundation of Chinaproject(2004C004) supported by Education Foundation of Liaoning Province, China
文摘The influence of microstructure stability on the creep properties of single crystal nickel-based superalloys was investigated by means of the measurement of the creep curves and microstructure observation. Results show that the superalloy with 4%(mass fraction)W in Ni-Al-Cr-Ta-Co-5.5%Mo-x%W systems displays a better microstructure stability, but theμphase is precipitated in the superalloy with 6% W during aging. The strip-likeμphase is precipitated to be parallel or perpendicular to each other along the <110> orientation, and grown into the slice-like morphology along the {111} planes. The superalloy with 4%W displays a better creep rupture lifetime under the applied stress of 200 MPa at 982℃, but the creep lifetime of alloy is obviously decreased with the increase of the element W content up to 6%. The fact that theμphase is precipitated in the superalloy with 6% W during applied stress and unstress aging results in the appearance of the poor regions for the refractory elements. This is one of the main reasons for reducing the creep rupture lifetime of the superalloy.
基金the Trans-Century Training Program Foundation for the Talents by the Ministry of Education of China the National Natural Science Foundation of China (No. 50172010) and Natural Science Foundation of Liaoning Province (No. 20
文摘The effects of ZrO2 on the crystallinity of mica and microstructure of a machina- ble glassceramic were studied. It was found that ZrO2 is an effective nucleation agent in mica glass- ceramics. Stabilized by Ca2+, a lot of t--ZrO2 particles precipitate from ZrO2-mica glass-ceramics. The ZrO2 particles can effectively limit the growth of mica crystal and benefit the mechanical properties of glass-ceramics.
文摘The phase transformation of R2O-CaO-SiO2-F system glass-ceramics with various additions of K2O and F was investigated by DTA, XRD, SEM and other techniques. The crystallization and the microstructure of the obtained glass-ceramics were also evaluated. The phase separation occurred in CN1 specimen after being quenched in water, but phase separation did not appear in other quenched specimens with the content of K2O and F increasing obviously, showing K2O and F modified the structure of the glass-forming melts. The increase of K2O and F resulted in the reduction of phase separation and the enhancement of crystallization. The main crystalline phase formed after heat-treatment was canasite and CaF2. The microstructures of the crystalline specimens consisted of interlocking radial and granular crystals. Moreover, the crystallinity was increased as the content of K2O was increased from 0.07 mol to 0.08 mol.
基金financially supported by the 973 project(2011CB610406)Natural Science Foundation of Hei Longjiang Province(JC201209)
文摘Five equiatomic alloys(Ti Zr Hf VNb, Ti Zr Hf VTa, Ti Zr Nb Mo V, Ti Zr Hf Mo V and Zr Nb Mo Hf V) composed of five elements with high melting temperature, respectively were prepared by arc-melting to develop a novel high temperature alloy. The five alloys exhibit different dendritic and interdendritic morphologies. The Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys formed disordered solid solution phases with body-centered cubic structure, and exhibited high compressive strength and good plasticity. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are composed with Laves phase(Hf Mo2) and disordered solid solution phases with body-centered cubic structure. The Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys are harder and more brittle than the other three alloys due to the existence of hard and brittle Laves phases. At high temperatures, the strength decreases to below 300 MPa for the Ti Zr Hf VNb and Ti Zr Hf Mo V alloys. Solution strengthening is the primary strengthening mechanism of the Ti Zr Hf VNb, Ti Zr Hf VTa and Ti Zr Nb Mo V alloys, and brittle Laves phase is the main cause for the low ductility of the Ti Zr Hf Mo V and Zr Nb Mo Hf V alloys.
基金Funded by the Open Fund Project of Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education(Guangxi University)(No.063006-5C-22)the National Natural Science Foun-dation of China(50272043)Key Technology R&D Program of China(2006BAJ02B00)
文摘The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.
文摘The microstructures of platinum (111) facets were studied by reflection electron microscopy, and the features on facets, for example, growth steps, slip steps, and dislocations emerging through the surfaces, etc., were analysed. In the following annealing at about 1100°C for 1 h in the atmosphere, the migration of crystal surface atoms resulted in the transformation of stepped configuration on (111) facets. Differently high and sized 〈111〉 terraces or small planes distributed on facets constructed frustum structures.
基金financially supported by the National Natural Science Foundation of China(Nos.50835002 and 51105102)
文摘By means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the microstructures of as-cast and heat-treated Mg--4Zn-IY (wt%) alloy containing quasi-crystal phase were studied. The microstructure of the as-cast alloy consists of a-Mg solid solution grains, intermetallic particles and eutectic phases (W-phase and 1-phase), and huge grains with seri- ous dendritic segregation are clearly observed. After heat treatment, phase transformation and dissolution occur in the alloy and many phases remain. When the alloy was treated above 410 ~C, the eutectic phases transform into spherical shape as the I-phase turns to W-phase. After heat treatment for long time, the alloy is over burnt and the W-phase decomposes to Mg-Y binary phase.
文摘The synthesis and characterization of meso-tetra (4-n-lauroyloxy phenyl) porphyrin with long ester chains are reported. The domains of stability and the structure of the liquid crystalline phases are determined by optical microscopy and differential scanning calorimerials (DSC).