Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared an...Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared and annealed microwires are investigated using a physical property measurement system(PPMS). Magnetocaloric effect(MCE) attributed to field-induced austenite transformation in the as-prepared and annealed microwires is analyzed indirectly from the isothermal magnetization(M-B) curves. The as-prepared microwire has a 7-layer modulated martensite structure(7M) at room temperature. The changes of austenite starting temperature induced by an external magnetic field(ΔAs/ΔB) in the as-prepared and annealed microwires are-1.6 and-4 K/T, respectively. Inverse martensite to austenite transformation exists in annealed microwires when an external magnetic field is applied at temperatures near As. The entropy change(ΔS) obtained in the annealed microwires is 3.0 J/(kg·K), which is much larger than that in the as-prepared microwires 0.5 J/(kg·K). The large entropy change and low price make Ni-Mn-In-Co microwires a potential working material in magnetic refrigeration.展开更多
基金Project(51001038)supported by the National Natural Science Foundation of China
文摘Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared and annealed microwires are investigated using a physical property measurement system(PPMS). Magnetocaloric effect(MCE) attributed to field-induced austenite transformation in the as-prepared and annealed microwires is analyzed indirectly from the isothermal magnetization(M-B) curves. The as-prepared microwire has a 7-layer modulated martensite structure(7M) at room temperature. The changes of austenite starting temperature induced by an external magnetic field(ΔAs/ΔB) in the as-prepared and annealed microwires are-1.6 and-4 K/T, respectively. Inverse martensite to austenite transformation exists in annealed microwires when an external magnetic field is applied at temperatures near As. The entropy change(ΔS) obtained in the annealed microwires is 3.0 J/(kg·K), which is much larger than that in the as-prepared microwires 0.5 J/(kg·K). The large entropy change and low price make Ni-Mn-In-Co microwires a potential working material in magnetic refrigeration.