The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polym...The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.展开更多
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi...A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.展开更多
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay...To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.展开更多
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an...The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.展开更多
A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru...A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.展开更多
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ...Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.展开更多
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica...Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well.展开更多
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t...This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.展开更多
A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, w...A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, was obtained when a 15 μm thick interlayer was used. The results of the shear testing and SEM indicate that fracture of the joint presented characteristics of ductile rupture.展开更多
Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding tim...Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3 MPa to 0.5 MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested.展开更多
Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material...Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.展开更多
The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an ine...The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.展开更多
Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient...Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning.展开更多
The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventiona...The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventional powder metallurgy technique. The aluminium powder and the whisker were effectively blended by a semi-powder metallurgy method. The blended powder mixtures were cold compacted and sintered at 600 ℃. The sintered composites were characterized for microstructural features by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analysis. Porosity in the composites with variation in ABOw contents was determined. The effect of variation in content of ABOw on mechanical properties, viz. hardness, bending strength and compressive strength of the composites was evaluated. The dry sliding wear behaviour was evaluated at varying sliding distance at constant loads. Maximum flexural strength of 172 MPa and compressive strength of 324 MPa with improved hardness around HV 40.2 are obtained in composite with 10 wt.% ABOw. Further increase in ABOw content deteriorates the properties. A substantial increase in wear resistance is also observed with 10 wt.% ABOw. The excellent combination of mechanical properties of Al-10 wt.%ABOw composites is attributed to good interfacial bonds, less porosity and uniformity in the microstructure.展开更多
Al-based composites reinforced with A1-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces ...Al-based composites reinforced with A1-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces as well as soft/hard/soft transition regions between the matrix and reinforced agents, which are beneficial to load transfer during deformation. As expected, the resultant composites exhibit promising mechanical properties at ambient temperature. The underlying mechanism was also discussed in this paper.展开更多
This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to st...This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.展开更多
In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced compos...In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.展开更多
The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield str...The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.展开更多
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)...This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties.展开更多
The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with differ...The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with different binder combinations and W/B ratios(from 0.44 to 0.78)providing satisfactory PVA fiber dispersion were specially designed.Effect of pre-existing flaw size distribution modification on deflection hardening behavior was comparatively studied by adding 3 mm diameter polyethylene beads into the mixtures(6%by total volume).Natural flaw size distributions of composites without beads were determined by cross sectional analysis.The crack number and crack width distributions of specimens after flexural loading were characterized and the possible causes of changes in multiple cracking and deflection hardening behavior by flaw size distribution modification were discussed.Promising results from the view point of deflection hardening behavior were obtained from metakaolin incorporated and flaw size distribution modified PVA-ECCs prepared with W/B=0.53.The dual roles of W/B ratio and superplasticizer content on flaw size distribution,cracking potential and fiber-matrix bond behavior were evaluated.Flaw size distribution modification is found beneficial in terms of ductility improvement at an optimized W/B ratio.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No 61004008), the Central Universities under Grant HEUCFR1001 and LBH-10138 Higher Sliding Mode Control for Underactuated Surface Ship.
文摘The use of a glass-fiber reinforced composite in marine structures is becoming more common, particularly due to the potential weight savings. The mechanical response of the joint between a glass-fiber reinforced polymer (GRP) superstructure and a steel hull formed is examined and subsequently modified to improve performance through a combined program of modeling and testing. A finite-element model is developed to predict the response of the joint. The model takes into account the contact at the interface between different materials, progressive damage, large deformation theory, and a non-linear stress-strain relationship. To predict the progressive failure, the analysis combines Hashin failure criteria and maximum stress failure criteria. The results show stress response has a great influence on the strength and bearing of the joint. The Balsawood-steel interface is proved to be critical to the mechanical behavior of the joint. Good agreement between experimental results and numerical predictions is observed.
文摘A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.
文摘To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.
文摘The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings.
基金Projects (51875121,51405100) supported by the National Natural Science Foundation of ChinaProjects (2014M551233,2017T100237) supported by the China Postdoctoral Science Foundation+2 种基金Project (ZR2017PA003) supported by the Natural Science Foundation of Shandong Province,ChinaProject (2017GGX202006) supported by the Plan of Key Research and Development of Shandong Province,ChinaProject (2016DXGJMS05) supported by the Plan of Science and Technology Development of Weihai,China
文摘A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.
基金supported by the Natural Science Foundation of China(Grant No.31600459)the Natural Science Foundation of Heilongjiang Province of China(Grant No.C2016001)
文摘Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.
基金Funded by the National Natural Science Foundation of China(No.5117 5308)the National Science and Technology Major Project of China(No.2012ZX04010032)
文摘Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well.
基金support of Reliance Industries and Bakaert Industries, India for providing fiber for the experimental work
文摘This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.
基金the National Advanced Technology "863" Project of China with !No.715-005-0800
文摘A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, was obtained when a 15 μm thick interlayer was used. The results of the shear testing and SEM indicate that fracture of the joint presented characteristics of ductile rupture.
文摘Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3 MPa to 0.5 MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested.
基金supported financially by the National Research Foundationthe support from the the Tshwane University of Technology, Pretoria, South Africa which helped to accomplish this work
文摘Titanium has found extensive use in various engineering applications due to its attractive physical,mechanical, and chemical characteristics. However, titanium has relatively low hardness for use as an armour material. ZrB2 was incorporated to the Ti matrix to form a Ti-based binary composites. In this study, powder metallurgy techniques were employed to disperse the ceramic particulates throughout the matrix material then consolidated through spark plasma sintering. The composites were densified at1300 ℃, pressure of 50 MPa, and holding time of 5 min. The microstructure and phase analysis of the sintered composites was carried out using SEM and XRD, while the hardness was determined using Vickers' microhardness tester. The SEM and XRD results confirmed the presence of the TiB whiskers which renowned with the improving the hardness of titanium. The hardness of the composite with 10 wt% ZrB_2 showed the highest hardness compared to that obtained for the 5 and 15 wt% ZrB_2 composites which was 495 and 571 Hv respectively.
文摘The fabrication of copper (Cu) and copper matrix silicon carbide (Cu/SiCp) particulate composites via the sinter-forging process was investigated. Sintering and sinter-forging processes were performed under an inert Ar atmosphere. The influence of sinter-forging time, temperature, and compressive stress on the relative density and hardness of the prepared samples was systematically investigated and subsequently compared with that of the samples prepared by the conventional sintering process. The relative density and hardness of the composites were enhanced when they were prepared by the sinter-forging process. The relative density values of all Cu/SiCp composite samples were observed to decrease with the increase in SiC content.
文摘Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning.
基金support provided by the Central Instrument Facility Centre(CIFC)of IIT(BHU)the Department of Ceramic Engineering especially Advance Refractory Lab(ARL)of IIT(BHU)Varanasi。
文摘The microstructural features and the consequent mechanical properties were characterized in aluminium borate whisker(ABOw)(5, 10 and 15 wt.%) reinforced commercially-pure aluminium composites fabricated by conventional powder metallurgy technique. The aluminium powder and the whisker were effectively blended by a semi-powder metallurgy method. The blended powder mixtures were cold compacted and sintered at 600 ℃. The sintered composites were characterized for microstructural features by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and X-ray diffraction(XRD) analysis. Porosity in the composites with variation in ABOw contents was determined. The effect of variation in content of ABOw on mechanical properties, viz. hardness, bending strength and compressive strength of the composites was evaluated. The dry sliding wear behaviour was evaluated at varying sliding distance at constant loads. Maximum flexural strength of 172 MPa and compressive strength of 324 MPa with improved hardness around HV 40.2 are obtained in composite with 10 wt.% ABOw. Further increase in ABOw content deteriorates the properties. A substantial increase in wear resistance is also observed with 10 wt.% ABOw. The excellent combination of mechanical properties of Al-10 wt.%ABOw composites is attributed to good interfacial bonds, less porosity and uniformity in the microstructure.
文摘Al-based composites reinforced with A1-Ti intermetallic compounds/Ti metal hierarchically spherical agents were successfully fabricated by powder metallurgy. This kind of structure produces strongly bonded interfaces as well as soft/hard/soft transition regions between the matrix and reinforced agents, which are beneficial to load transfer during deformation. As expected, the resultant composites exhibit promising mechanical properties at ambient temperature. The underlying mechanism was also discussed in this paper.
基金The Technical Research Program from NV Bekaert SA of Belgium (No. 8612000003)the National Natural Science Foundation of China (No. 50908047)
文摘This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.
基金The project supported by the Special Funds for the National Major Fundamental Research Projects(2004CB619304)the National Natural Science Foundation of China(10276020 and 50371042)the Key Grant Project of Chinese Ministry of Education(0306)
文摘In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.
基金Project(20111080980) supported by the Initiative Scientific Research Program,Tsinghua University,ChinaProject(2013AA031201) supported by the High Technology Research and Development Program of China
文摘The super-aligned carbon nanotube(SACNT)films reinforced copper(Cu)laminar composites with different orientationsof CNT ply were fabricated by electrodeposition.The results show that the tensile strength and yield strength of cross-ply compositewith5.0%(volume fraction)of SACNT reach maximum of336.3MPa and246.0MPa respectively,increased by74.0%and124.5%compared with pure Cu prepared with the same method.Moreover,the electrical conductivities of all the prepared composites areover75%IACS.The result of TEM analysis shows that the size of Cu grain and the thickness of twin lamellae can be reduced byadding SACNT,and the refining effect in cross-ply composites is more significant than that in unidirectional ply composites.Theenhanced strength of the Cu/SACNT composites comes from not only the reinforcing effect of SACNT films but also the additionalstrengthening of the Cu grain refinement caused by CNT orientation.
基金Funded by Key Research and Development Plan in Hubei Province of China(Nos.2022BCA082,2022BCA077,2021BCA153)Initial Scientific Research Fund for High-level Talents of Hubei University of Technology(No.GCRC2020017)。
文摘This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties.
基金Project(114M246)supported by the Scientific and Technological Research Council of Turkey
文摘The multiple cracking and deflection hardening performance of polyvinyl alcohol fiber reinforced engineered cementitious composites(PVA-ECC)under four-point flexural loading have been investigated.Matrices with different binder combinations and W/B ratios(from 0.44 to 0.78)providing satisfactory PVA fiber dispersion were specially designed.Effect of pre-existing flaw size distribution modification on deflection hardening behavior was comparatively studied by adding 3 mm diameter polyethylene beads into the mixtures(6%by total volume).Natural flaw size distributions of composites without beads were determined by cross sectional analysis.The crack number and crack width distributions of specimens after flexural loading were characterized and the possible causes of changes in multiple cracking and deflection hardening behavior by flaw size distribution modification were discussed.Promising results from the view point of deflection hardening behavior were obtained from metakaolin incorporated and flaw size distribution modified PVA-ECCs prepared with W/B=0.53.The dual roles of W/B ratio and superplasticizer content on flaw size distribution,cracking potential and fiber-matrix bond behavior were evaluated.Flaw size distribution modification is found beneficial in terms of ductility improvement at an optimized W/B ratio.