The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage pro...The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage process. The two different matrices of unsaturated polyester and vinylester GFRP bars were selected to carry out a series of macro-mesoscopic physical and mechanical tests to analyze the tensile progressive damage process on a multiscale. The formation of apparent crack,the bonding of internal components as well as the strain change were all reflected damage evolution of GFRP bar,and a certain correlation existed between them. Wherein the matrix has an obvious impact on the damage of bar,the component stress transfer effect of vinylester bar is better than unsaturated polyester from crack propagation observation and scanning electron microscopy( SEM). The cyclic loading tests quantitatively reflect the difference of damage accumulation between different matrix bars,and the failure load of bars decreases nearly 10%.展开更多
Three cumulative damage models are examined for the case of cyclic loading of AISI 6150 steel, S2 glass fibre/epoxy and E glass fibre/epoxy composites. The Palmgren-Miner, Broutman-Sahu and Hashin-Rotem models are com...Three cumulative damage models are examined for the case of cyclic loading of AISI 6150 steel, S2 glass fibre/epoxy and E glass fibre/epoxy composites. The Palmgren-Miner, Broutman-Sahu and Hashin-Rotem models are compared to determine which of the three gives the most accurate estimation of the fatigue life of the materials tested. In addition, comparison of the fatigue life of the materials shows the superiority of AISI 6150 steel and S2 glass fibre/epoxy at lower mean stresses, and that of steel to the composites at higher mean stresses.展开更多
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse...The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.展开更多
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC...Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.展开更多
基金National Natural Science Foundation of China(No.51278391)Huazhong University of Science and Technology Analytical and Testing Center,China
文摘The damage formation and evolution of glass fiber reinforced plastics( GFRP) bar on mechanical properties were mainly evaluated by theoretical analysis and numerical calculations which lack of test basis of damage process. The two different matrices of unsaturated polyester and vinylester GFRP bars were selected to carry out a series of macro-mesoscopic physical and mechanical tests to analyze the tensile progressive damage process on a multiscale. The formation of apparent crack,the bonding of internal components as well as the strain change were all reflected damage evolution of GFRP bar,and a certain correlation existed between them. Wherein the matrix has an obvious impact on the damage of bar,the component stress transfer effect of vinylester bar is better than unsaturated polyester from crack propagation observation and scanning electron microscopy( SEM). The cyclic loading tests quantitatively reflect the difference of damage accumulation between different matrix bars,and the failure load of bars decreases nearly 10%.
文摘Three cumulative damage models are examined for the case of cyclic loading of AISI 6150 steel, S2 glass fibre/epoxy and E glass fibre/epoxy composites. The Palmgren-Miner, Broutman-Sahu and Hashin-Rotem models are compared to determine which of the three gives the most accurate estimation of the fatigue life of the materials tested. In addition, comparison of the fatigue life of the materials shows the superiority of AISI 6150 steel and S2 glass fibre/epoxy at lower mean stresses, and that of steel to the composites at higher mean stresses.
文摘The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.
文摘Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.