By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental...By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.展开更多
The automatic crystallization of MgO during the sintering of Si3N4 —MgO —CeO2 is first discovered. For Si3N4 —MgO —CeO2 ceramics, the MgO—CeO2 would react with SiO2 to form liquid at 1450℃ and then transform int...The automatic crystallization of MgO during the sintering of Si3N4 —MgO —CeO2 is first discovered. For Si3N4 —MgO —CeO2 ceramics, the MgO—CeO2 would react with SiO2 to form liquid at 1450℃ and then transform into glassy phase in the sintered bodies after cooling down. Above 1550℃, MgO would crystallize automatically during sinter-ing. So the glassy phase which is harmful to the high temper-ature properties is then eliminated. The present work is of great value for theoretical study and application.展开更多
To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the...To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the obtaining samples were analyzed by X-ray diffraction,scanning electron microscopy and energy dispersive spectrometer.It showed that 3MnO·Al_(2)O_(3)·3SiO_(2)and MnO·SiO_(2)were detected in the 5 wt.%MgO system after isothermal holding in Ar atmosphere,while MgO·Al_(2)O_(3),MnO·SiO_(2)and Mn7O8·SiO4 were detected in air atmosphere.The evolutionary behavior of the 10,15 and 20 wt.%MgO systems after isothermal holding in different atmosphere were consistent.Oxygen affected the solid phase transformation of the low MgO content systems.The calculation results of FactSage 8.1 showed that MgO·Al_(2)O_(3)was formed in the 5 wt.%MgO system with air atmosphere.The solid phase transformation was accompanied by grain coarsening during the isothermal holding process.The differences in the solid phase transformation in different atmosphere of the 5 wt.%MgO system indicated that it was a gas-phase transport grain coarsening mechanism.The enrichment of Al element in the liquid phase region at the grain edges,the homogeneous distribution of Mg element and the disappearance of the liquid phase within the crystal revealed that other MgO content systems were liquid–solid transport grain coarsening mechanism.展开更多
基金Project(202045007)supported by the Start-up Funds for Outstanding Talents in Central South University,China。
文摘By employing sintering additives of Li2CO3 and Y2O3,porous Si3N4 ceramics are prepared after experiencing the processes of sintering and post-vacuum heat treatment at 1680 and 1550°C,respectively.The experimental results demonstrate the completed phase transformation fromαtoβ-Si3N4 in Si3N4 ceramic samples with a amount of 1.60 wt%Li2CO3(0.65 wt%Li2O)and 0.33 wt%Y2O3 additives.The as-synthesized porous Si3N4 ceramics exhibit high flexural strength((126.7±2.7)MPa)and high open porosity of 50.4%at elevated temperature(1200°C).These results are attributed to the significant role of added Li2CO3 as sintering additive,where the volatilization of intergranular glassy phase occurs during sintering process.Therefore,porous Si3N4 ceramics with desired mechanical property prepared by altering the addition of sintering additives demonstrate their great potential as a promising candidate for high temperature applications.
文摘The automatic crystallization of MgO during the sintering of Si3N4 —MgO —CeO2 is first discovered. For Si3N4 —MgO —CeO2 ceramics, the MgO—CeO2 would react with SiO2 to form liquid at 1450℃ and then transform into glassy phase in the sintered bodies after cooling down. Above 1550℃, MgO would crystallize automatically during sinter-ing. So the glassy phase which is harmful to the high temper-ature properties is then eliminated. The present work is of great value for theoretical study and application.
基金supported by the National Natural Science Foundation of China(Nos.52274341 and 51974210).
文摘To investigate the evolutionary behavior of the MnO–SiO_(2)–Al_(2)O_(3)–MgO inclusions during heat treatment,water quenched samples were isothermally held at 1100°C for 120 min in Ar and air atmosphere,and the obtaining samples were analyzed by X-ray diffraction,scanning electron microscopy and energy dispersive spectrometer.It showed that 3MnO·Al_(2)O_(3)·3SiO_(2)and MnO·SiO_(2)were detected in the 5 wt.%MgO system after isothermal holding in Ar atmosphere,while MgO·Al_(2)O_(3),MnO·SiO_(2)and Mn7O8·SiO4 were detected in air atmosphere.The evolutionary behavior of the 10,15 and 20 wt.%MgO systems after isothermal holding in different atmosphere were consistent.Oxygen affected the solid phase transformation of the low MgO content systems.The calculation results of FactSage 8.1 showed that MgO·Al_(2)O_(3)was formed in the 5 wt.%MgO system with air atmosphere.The solid phase transformation was accompanied by grain coarsening during the isothermal holding process.The differences in the solid phase transformation in different atmosphere of the 5 wt.%MgO system indicated that it was a gas-phase transport grain coarsening mechanism.The enrichment of Al element in the liquid phase region at the grain edges,the homogeneous distribution of Mg element and the disappearance of the liquid phase within the crystal revealed that other MgO content systems were liquid–solid transport grain coarsening mechanism.