期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms
1
作者 Xiaoyun Qiu Yuanzhi Yang +3 位作者 Xiaoli Da Yi Wang Zhong Chen Cenglin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1056-1063,共8页
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of... Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of satellite glial cells become activated,thus triggering a series of functional changes.This suggests that satellite glial cells are closely related to the occurrence of chronic pain.In this review,we first summarize the morphological structure,molecular markers,and physiological functions of satellite glial cells.Then,we clarify the multiple key roles of satellite glial cells in chronic pain,including gap junction hemichannel Cx43,membrane channel Pannexin1,K channel subunit 4.1,ATP,purinergic P2 receptors,and a series of additional factors and their receptors,including tumor necrosis factor,glutamate,endothelin,and bradykinin.Finally,we propose that future research should focus on the specific sorting of satellite glial cells,and identify genomic differences between physiological and pathological conditions.This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain. 展开更多
关键词 chronic pain primary sensory neurons satellite glial cells sensory ganglia
下载PDF
Stem cell therapy for central nerve system injuries: glial cells hold the key 被引量:3
2
作者 Li Xiao Chikako Saiki Ryoji Ide 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第13期1253-1260,共8页
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regener... Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells' behavior to create a permissive microenvironment for neuronal stem cells. 展开更多
关键词 Neuron regeneration stem cell therapy glial cells MICROENVIRONMENT oligodendrocyteregeneration CNS injury
下载PDF
Role of Enteric Glial Cells in Gastric Motility in Diabetic Rats at Different Stages 被引量:4
3
作者 祁冉 杨伟 陈婕 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第4期496-500,共5页
Summary: Diabetes patients tend to have the gastrointestinal motility disorder. Although the relationship between the motility disorder and both the neurons and Cajal cells in the enteric nervous system (ENS) is we... Summary: Diabetes patients tend to have the gastrointestinal motility disorder. Although the relationship between the motility disorder and both the neurons and Cajal cells in the enteric nervous system (ENS) is well established, little is known about the role of enteric glial cells (EGCs) in gastric motility in diabetes. This study aimed to examine the expression of the glial marker S100B and morphology of EGCs in gastric tissues and the relationship between activated EGCs and the damage of gastric emptying in diabetic models. The diabetic model of rat was induced with 1% streptozotocin (STZ). The model rats at 7-14 days and at 56-63 days were defined as early diabetic rats and advanced diabetic rats, re- spectively, and normal rats at the two time periods served as their corresponding controls. The gastric emptying rate of the rats was tested by using the phenol red solution. The ultrastructure of EGCs in the gastric antrum was observed by the transmission electron microscopy, and the expression of S100B in the myenteric plexus was immunohistochemically detected. The results showed that the gastric emptying rate was significantly increased in the early diabetic rats and decreased in the advanced diabetic rats when compared with their corresponding control rats (P〈0.01 for both). The ultrastructure of EGCs was mostly normal in both the early diabetic and control groups. Vacuolization of mitochondria and expan- sion of endoplasmic reticulum occurred in both the advanced diabetic group and its control group, and even the structure of smooth muscle cells and intestinal neurons was destroyed in the advanced diabetic group. The expression level of S100B in the advanced diabetic group was significantly decreased com- pared with its control group (P〈0.05). It was obviously increased in the early diabetic control group when compared with the advanced diabetic control group (P〈0.05). However, there was no significant difference in the S 100B expression between the early diabetic group and its control group (P〉0.05). The findings suggested that the gastric motility dysfunction in diabetes may be associated with the changes of morphology and number of EGCs in the myenteric plexus. 展开更多
关键词 gastric motility enteric glial cells SIOOB DIABETES
下载PDF
Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity 被引量:2
4
作者 Lihong Zhou Hui Wang +4 位作者 Jia Luo Kun Xiong Leping Zeng Dan Chen Jufang Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第4期385-393,共9页
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still uncle... Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin. 展开更多
关键词 nerve regeneration neuronal plasticity retina synapses SYNAPTOPHYSIN glial cells highintraocular pressure FLUOROCITRATE glial fibrillary acidic protein NSFC grant neural regeneration
下载PDF
Regulation of neuroinflammatory properties of glial cells by T cell effector molecules 被引量:1
5
作者 chittappen k.prajeeth jochen huehn martin stangel 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期234-236,共3页
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder that is thought to be mediated by autoreactive T lymphocytes that find their way into the central nervous system (CNS). The patholog... Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder that is thought to be mediated by autoreactive T lymphocytes that find their way into the central nervous system (CNS). The pathological mechanism of MS is still being elucidated but it involves complex interactions between infiltrating immune cells and resi- dent glial cells within the CNS that culminate into strong neuroinflammation and axonal damage. 展开更多
关键词 Regulation of neuroinflammatory properties of glial cells by T cell effector molecules TH CNS
下载PDF
Impact of SARS-CoV-2 infection during pregnancy on postnatal brain development:The potential role of glial cells
6
作者 LARISSA DANIELE BOBERMIN LARA SCOPEL MEDEIROS +5 位作者 FERNANDA WEBER GIANCARLO TOMAZZONI DE OLIVEIRA LUCÉLIA SANTI WALTER ORLANDO BEYS-DA-SILVA CARLOS-ALBERTO GONÇALVES ANDRÉQUINCOZES-SANTOS 《BIOCELL》 SCIE 2022年第12期2517-2523,共7页
Glial cells are crucial for maintaining central nervous system(CNS)homeostasis.They actively participate in immune responses,as well as form functional barriers,such as blood-brain barrier(BBB),which restrict the entr... Glial cells are crucial for maintaining central nervous system(CNS)homeostasis.They actively participate in immune responses,as well as form functional barriers,such as blood-brain barrier(BBB),which restrict the entry of pathogens and inflammatory mediators into the CNS.In general,viral infections during the gestational period can alter the embryonic and fetal environment,and the related inflammatory response may affect neurodevelopment and lead to behavioral dysfunction during later stage of life,as highlighted by our group for Zika virus infection.Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2)induces a cytokine storm and,during pregnancy,may be related to a more severe form of the coronavirus disease-19(COVID-19)and also to higher preterm birth rates.SARS-CoV-2 can also affect the CNS by inducing neurochemical remodeling in neural cells,which can compromise neuronal plasticity and synaptic function.However,the impact of SARS-CoV-2 infection during pregnancy on postnatal CNS,including brain development during childhood and adulthood,remains undetermined.Our group has recently highlighted the impact of COVID-19 on the expression of molecular markers associated with neuropsychiatric disorders,which are strongly related to the inflammatory response.Thus,based on these relationships,we discussed the impact of SARS-CoV-2 infection either during pregnancy or in critical periods of neurodevelopment as a risk factor for neurological consequences in the offspring later in life,focusing on the potential role of glial cells.Thus,it is important to consider future and long-term public health concerns associated with SARS-CoV-2 infection during pregnancy. 展开更多
关键词 Brain development glial cells INFLAMMATION PREGNANCY SARS-CoV-2
下载PDF
Neurotrophins and their receptors in satellite glial cells following nerve injury
7
作者 Christian Bjerggaard Vaegter 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2038-2039,共2页
Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and ... Peripheral neuropathy is a condition where damage resulting from mechanical or pathological mechanisms is inflicted on nerves within the peripheral nervous system (PNS). Physical injury is the most common cause and may result in nerves being partially or completely severed, crushed, compressed or stretched. Other causes include metabolic or endocrine disorders, with e.g., 展开更多
关键词 cell NGF SGC Neurotrophins and their receptors in satellite glial cells following nerve injury
下载PDF
The emerging roles of transplanted radial glial cells in regenerating the central nervous system
8
作者 Robin E.White Denis S.Barry 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1548-1551,共4页
Scientists conclude that a combination of treatments involving rehabilitation,drug delivery,surgery and cell transplantation are necessary to achieve significant progress in regenerating the injured central nervous sy... Scientists conclude that a combination of treatments involving rehabilitation,drug delivery,surgery and cell transplantation are necessary to achieve significant progress in regenerating the injured central nervous system(CNS). 展开更多
关键词 CELL The emerging roles of transplanted radial glial cells in regenerating the central nervous system
下载PDF
Axotomy induces damage to glial cells remote from the transection site in the peripheral nervous system
9
作者 Anatoly B.Uzdensky 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期639-640,共2页
Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in yo... Traumatic cerebral or spinal cord injury induced by military,traffic,and sports accidents,falls or environmental and anthropogenic catastrophes are among main causes of people mortality and disability,especially in young and middle age men(Kobeissy,2015).Axon transection,or axotomy,occurs in wounds and during surgery. 展开更多
关键词 Axotomy induces damage to glial cells remote from the transection site in the peripheral nervous system CSR
下载PDF
Seeing the wood for the trees:towards improved quantification of glial cells in central nervous system tissue 被引量:1
10
作者 Sinéad Healy Jill McMahon Una FitzGerald 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1520-1523,共4页
The following mini-review attempts to guide researchers in the quantification of fluorescently-labelled proteins within cultured thick or chromogenically-stained proteins within thin sections of brain tissue.It follow... The following mini-review attempts to guide researchers in the quantification of fluorescently-labelled proteins within cultured thick or chromogenically-stained proteins within thin sections of brain tissue.It follows from our examination of the utility of Fiji Image J thresholding and binarization algorithms.Describing how we identified the maximum intensity projection as the best of six tested for two dimensional(2 D)-rendering of three-dimensional(3 D) images derived from a series of z-stacked micrographs,the review summarises our comparison of 16 global and 9 local algorithms for their ability to accurately quantify the expression of astrocytic glial fibrillary acidic protein(GFAP),microglial ionized calcium binding adapter molecule 1(IBA1) and oligodendrocyte lineage Olig2 within fixed cultured rat hippocampal brain slices.The application of these algorithms to chromogenically-stained GFAP and IBA1 within thin tissue sections,is also described.Fiji’s Bio Voxxel plugin allowed categorisation of algorithms according to their sensitivity,specificity accuracy and relative quality.The Percentile algorithm was deemed best for quantifying levels of GFAP,the Li algorithm was best when quantifying IBA expression,while the Otsu algorithm was optimum for Olig2 staining,albeit with over-quantification of oligodendrocyte number when compared to a stereological approach.Also,GFAP and IBA expression in 3,3′-diaminobenzidine(DAB)/haematoxylin-stained cerebellar tissue was best quantified with Default,Isodata and Moments algorithms.The workflow presented in Figure 1 could help to improve the quality of research outcomes that are based on the quantification of protein with brain tissue. 展开更多
关键词 organotypic brain slice culture glial cell quantification thresholding algorithms Fiji Image J Bio Voxxel plug-in STEREOLOGY
下载PDF
Effect of glial cells on remyelination after spinal cord injury 被引量:7
11
作者 Hai-feng Wang Xing-kai Liu +10 位作者 Rui Li Ping Zhang Ze Chu Chun-li Wang Hua-rui Liu Jun Qi Guo-yue Lv Guang-yi Wang Bin Liu Yan Li Yuan-yi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1724-1732,共9页
Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesi... Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury remyelination oligodendrocyte precursor cells astrocytes oligodendrocytes microglia glial scar demyelination myelin central nervous system neural regeneration
下载PDF
Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone
12
作者 Madeha Ishag Adam Ling Lin +6 位作者 Amir Mahmoud Makin Xiao-Fen Zhang Lu-Xi Zhou Xin-Yue Liao Li Zhao Feng Wang Dao-Shu Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1364-1370,共7页
The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve... The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve injury.The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone.This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions.Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor.In monoculture,glial cell line-derived neurotrophic factor promoted the migration of Schwann cells,but it did not have effects on the migration of astrocytes.In the co-culture system,glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells.Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes.However,in the co-culture system,brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree.These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone.This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions. 展开更多
关键词 ASTROCYTES brain-derived neurotrophic factor cell migration glial cell line-derived neurotrophic factor glial interaction Schwann cells trigeminal nerve
下载PDF
Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells,Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice
13
作者 Xue Li Shimin Zou +3 位作者 Xiaomeng Tu Shishuai Hao Tian Jiang Jie-Guang Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第7期1131-1145,共15页
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders(NDDs)that exhibit delayed speech development,intellectual disability,and congenital abnormalities.The etiology of NDDs i... Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders(NDDs)that exhibit delayed speech development,intellectual disability,and congenital abnormalities.The etiology of NDDs is unclear.Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells(RGCs),respectively,in the mouse neocortex during early gestation.Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone(VZ).Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ.The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs.The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions,the loss of which leads to periventricular heterotopias.We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex. 展开更多
关键词 NEUROGENESIS Radial migration Radial glial cell Ventricular zone N-CADHERIN
原文传递
Effects of estrogen on collagen gel contraction by human retinal glial cells 被引量:5
14
作者 QIU Qing-hua CHEN Zhi-Yi YIN Li-li ZHENG Zhi WU Xing-wei 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第22期4098-4103,共6页
Background There are definite gender differences in patients with macular holes. Menopausal women over 50 years are most affected. We aimed to observe the effect of estrogen on collagen gel contraction by cultured hum... Background There are definite gender differences in patients with macular holes. Menopausal women over 50 years are most affected. We aimed to observe the effect of estrogen on collagen gel contraction by cultured human retinal glial cells. It is speculated that estrogen could strengthen the tensile stress of the macula by maintaining the correct morphology and contraction. Methods Estrogen was used to determine its effects on collagen gel contraction, and its function was measured using morphological changes in cells. Human retinal glial cells were cultured in collagen solution. The cells were then exposed to collagen gels and the degree of contraction of the gel was determined. Results Estrogen at differing concentrations had no effect on the growth of human retinal glial cells. However, after exposed to collagen gel block, less contraction was noted in the estrogen-treated group than in the control group. Conclusions Estrogen can inhibit collagen gel contraction by glial cells. These results suggest a mechanism for macular hole formation, which is observed in menopausal females. 展开更多
关键词 ESTROGEN human retinal glial cells three-dimensional culture
原文传递
Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders 被引量:2
15
作者 Natalie Kaminsky Ofer Bihari +1 位作者 Sivan Kanner Ari Barzilai 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2016年第3期155-165,共11页
The DNA damage response(DDR) is a complex biological system activated by different types of DNA damage.Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in... The DNA damage response(DDR) is a complex biological system activated by different types of DNA damage.Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration,premature aging,and various types of cancers.Intriguingly,malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's,Alzheimer's,and Huntington's diseases.For many years,brain degenerative disorders were thought to result from aberrant neural death.Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells(astrocytes,microglia,and oligodendrocytes).Impairment in the functionality of glial cells results in pathological neuro-glial interactions that,in turn,generate a ‘‘hostile" environment that impairs the functionality of neuronal cells.These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. 展开更多
关键词 DNA damage response Genomic instability Brain degenerative diseases glial cells Astrocytes Microglia
原文传递
Possible role of microparticles in neuroimmune signaling of microglial cells
16
作者 Stephanie M.Schindler Ekta Bajwa +1 位作者 Jonathan P.Little Andis Klegeris 《Neuroimmunology and Neuroinflammation》 2016年第1期232-242,共11页
Aim:Submicron fragments termed microparticles(MPs),derived from all major central nervous system cell types including neurons and glia(microglia,astrocytes,oligodendrocytes),have emerged as novel intercellular signali... Aim:Submicron fragments termed microparticles(MPs),derived from all major central nervous system cell types including neurons and glia(microglia,astrocytes,oligodendrocytes),have emerged as novel intercellular signaling agents.This study tested the hypothesis that MPs derived from activated microglia,which represent the mononuclear phagocyte system in the brain,could induce pro-inflammatory and cytotoxic responses of microglia in an autocrine or paracrine manner.Methods:Human THP-1 monocytic cells were used to model human microglia.MPs derived from these cells were reapplied to THP-1 cells and their secretion of neurotoxins and cytokines was measured.Results:When exposed to lipopolysaccharide(LPS)or mitochondrial transcription factor A in combination with interferon(IFN)-γ,THP-1 cells released MPs.When reapplied to THP-1 cells,MPs induced the release of secretions that were toxic to human SH-SY5Y neuroblastoma cells,as well as monocyte chemoattractant protein-1.The cytotoxicity of THP-1 cells induced by MPs derived from IFN-γplus LPS-treated THP-1 donor cells was enhanced in the presence of IFN-γ.The MPs released by THP-1 cells were not directly toxic towards SH-SY5Y cells.Conclusion:Our data support the hypothesis that activated microglia-derived MPs could act as signaling agents that are recognized by microglia to cause pro-inflammatory and cytotoxic responses. 展开更多
关键词 MICROPARTICLES damage-associated molecular patterns mononuclear phagocytes glial cells MICROGLIA NEUROTOXICITY Alzheimer’s disease Parkinson’s disease
原文传递
The dorsal root ganglion as a target for neurorestoration in neuropathic pain
17
作者 Guillermo Estivill-Torrús Ana Belen Martínez-Padilla +2 位作者 Lourdes Sánchez-Salido Anne Baron-Van Evercooren Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期296-301,共6页
Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.... Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain. 展开更多
关键词 CYTOKINES dorsal root ganglia genetic factors neuropathic pain neurotrophic factors pharmacologic and nonpharmacologic therapies satellite glial cells sensory neurons
下载PDF
Automatic counting of microglial cell activation and its applications
18
作者 Beatriz I.Gallego Collado Pablo de Gracia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第8期1212-1215,共4页
Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells.This disease results in vision loss and blindness.Any vision loss resulting from the disease cannot be ... Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal ganglion cells.This disease results in vision loss and blindness.Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma; however an early detection and treatment,could offer neuronal protection and avoid later serious damages to the visual function.A full understanding of the etiology of the disease will still require the contribution of many scientific efforts.Glial activation has been observed in glaucoma,being microglial proliferation a hallmark in this neurodegenerative disease.A typical project studying these cellular changes involved in glaucoma often needs thousands of images- from several animals- covering different layers and regions of the retina.The gold standard to evaluate them is the manual count.This method requires a large amount of time from specialized personnel.It is a tedious process and prone to human error.We present here a new method to count microglial cells by using a computer algorithm.It counts in one hour the same number of images that a researcher counts in four weeks,with no loss of reliability. 展开更多
关键词 GLAUCOMA glial cells microglial cells automatic counting image processing inner plexiform layer outer plexiform layer bilateral activation
下载PDF
Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury 被引量:6
19
作者 Nowruz Najafzadeh Maliheh Nobakht +1 位作者 Bagher Pourheydar Mohammad Ghasem Golmohammadi 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第36期3365-3372,共8页
Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, ... Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibdssa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (~lll-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demon- strate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury cell transplantation cell therapy hair follicle stem cells OLIGODENDROCYTES nerve cells glial cells receptor-interacting protein grants-supported paper NEUROREGENERATION
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings
20
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部