期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms
1
作者 Xiaoyun Qiu Yuanzhi Yang +3 位作者 Xiaoli Da Yi Wang Zhong Chen Cenglin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1056-1063,共8页
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of... Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of satellite glial cells become activated,thus triggering a series of functional changes.This suggests that satellite glial cells are closely related to the occurrence of chronic pain.In this review,we first summarize the morphological structure,molecular markers,and physiological functions of satellite glial cells.Then,we clarify the multiple key roles of satellite glial cells in chronic pain,including gap junction hemichannel Cx43,membrane channel Pannexin1,K channel subunit 4.1,ATP,purinergic P2 receptors,and a series of additional factors and their receptors,including tumor necrosis factor,glutamate,endothelin,and bradykinin.Finally,we propose that future research should focus on the specific sorting of satellite glial cells,and identify genomic differences between physiological and pathological conditions.This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain. 展开更多
关键词 chronic pain primary sensory neurons satellite glial cells sensory ganglia
下载PDF
Impact of SARS-CoV-2 infection during pregnancy on postnatal brain development:The potential role of glial cells
2
作者 LARISSA DANIELE BOBERMIN LARA SCOPEL MEDEIROS +5 位作者 FERNANDA WEBER GIANCARLO TOMAZZONI DE OLIVEIRA LUCÉLIA SANTI WALTER ORLANDO BEYS-DA-SILVA CARLOS-ALBERTO GONÇALVES ANDRÉQUINCOZES-SANTOS 《BIOCELL》 SCIE 2022年第12期2517-2523,共7页
Glial cells are crucial for maintaining central nervous system(CNS)homeostasis.They actively participate in immune responses,as well as form functional barriers,such as blood-brain barrier(BBB),which restrict the entr... Glial cells are crucial for maintaining central nervous system(CNS)homeostasis.They actively participate in immune responses,as well as form functional barriers,such as blood-brain barrier(BBB),which restrict the entry of pathogens and inflammatory mediators into the CNS.In general,viral infections during the gestational period can alter the embryonic and fetal environment,and the related inflammatory response may affect neurodevelopment and lead to behavioral dysfunction during later stage of life,as highlighted by our group for Zika virus infection.Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2)induces a cytokine storm and,during pregnancy,may be related to a more severe form of the coronavirus disease-19(COVID-19)and also to higher preterm birth rates.SARS-CoV-2 can also affect the CNS by inducing neurochemical remodeling in neural cells,which can compromise neuronal plasticity and synaptic function.However,the impact of SARS-CoV-2 infection during pregnancy on postnatal CNS,including brain development during childhood and adulthood,remains undetermined.Our group has recently highlighted the impact of COVID-19 on the expression of molecular markers associated with neuropsychiatric disorders,which are strongly related to the inflammatory response.Thus,based on these relationships,we discussed the impact of SARS-CoV-2 infection either during pregnancy or in critical periods of neurodevelopment as a risk factor for neurological consequences in the offspring later in life,focusing on the potential role of glial cells.Thus,it is important to consider future and long-term public health concerns associated with SARS-CoV-2 infection during pregnancy. 展开更多
关键词 Brain development glial cells INFLAMMATION PREGNANCY SARS-CoV-2
下载PDF
Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone
3
作者 Madeha Ishag Adam Ling Lin +6 位作者 Amir Mahmoud Makin Xiao-Fen Zhang Lu-Xi Zhou Xin-Yue Liao Li Zhao Feng Wang Dao-Shu Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1364-1370,共7页
The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve... The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve injury.The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone.This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions.Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor.In monoculture,glial cell line-derived neurotrophic factor promoted the migration of Schwann cells,but it did not have effects on the migration of astrocytes.In the co-culture system,glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells.Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes.However,in the co-culture system,brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree.These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone.This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions. 展开更多
关键词 ASTROCYTES brain-derived neurotrophic factor cell migration glial cell line-derived neurotrophic factor glial interaction Schwann cells trigeminal nerve
下载PDF
Inhibition of Foxp4 Disrupts Cadherin-based Adhesion of Radial Glial Cells,Leading to Abnormal Differentiation and Migration of Cortical Neurons in Mice
4
作者 Xue Li Shimin Zou +3 位作者 Xiaomeng Tu Shishuai Hao Tian Jiang Jie-Guang Chen 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第7期1131-1145,共15页
Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders(NDDs)that exhibit delayed speech development,intellectual disability,and congenital abnormalities.The etiology of NDDs i... Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders(NDDs)that exhibit delayed speech development,intellectual disability,and congenital abnormalities.The etiology of NDDs is unclear.Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells(RGCs),respectively,in the mouse neocortex during early gestation.Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone(VZ).Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ.The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs.The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions,the loss of which leads to periventricular heterotopias.We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex. 展开更多
关键词 NEUROGENESIS Radial migration Radial glial cell Ventricular zone N-CADHERIN
原文传递
Possible role of microparticles in neuroimmune signaling of microglial cells
5
作者 Stephanie M.Schindler Ekta Bajwa +1 位作者 Jonathan P.Little Andis Klegeris 《Neuroimmunology and Neuroinflammation》 2016年第1期232-242,共11页
Aim:Submicron fragments termed microparticles(MPs),derived from all major central nervous system cell types including neurons and glia(microglia,astrocytes,oligodendrocytes),have emerged as novel intercellular signali... Aim:Submicron fragments termed microparticles(MPs),derived from all major central nervous system cell types including neurons and glia(microglia,astrocytes,oligodendrocytes),have emerged as novel intercellular signaling agents.This study tested the hypothesis that MPs derived from activated microglia,which represent the mononuclear phagocyte system in the brain,could induce pro-inflammatory and cytotoxic responses of microglia in an autocrine or paracrine manner.Methods:Human THP-1 monocytic cells were used to model human microglia.MPs derived from these cells were reapplied to THP-1 cells and their secretion of neurotoxins and cytokines was measured.Results:When exposed to lipopolysaccharide(LPS)or mitochondrial transcription factor A in combination with interferon(IFN)-γ,THP-1 cells released MPs.When reapplied to THP-1 cells,MPs induced the release of secretions that were toxic to human SH-SY5Y neuroblastoma cells,as well as monocyte chemoattractant protein-1.The cytotoxicity of THP-1 cells induced by MPs derived from IFN-γplus LPS-treated THP-1 donor cells was enhanced in the presence of IFN-γ.The MPs released by THP-1 cells were not directly toxic towards SH-SY5Y cells.Conclusion:Our data support the hypothesis that activated microglia-derived MPs could act as signaling agents that are recognized by microglia to cause pro-inflammatory and cytotoxic responses. 展开更多
关键词 MICROPARTICLES damage-associated molecular patterns mononuclear phagocytes glial cells MICROGLIA NEUROTOXICITY Alzheimer’s disease Parkinson’s disease
原文传递
The dorsal root ganglion as a target for neurorestoration in neuropathic pain
6
作者 Guillermo Estivill-Torrús Ana Belen Martínez-Padilla +2 位作者 Lourdes Sánchez-Salido Anne Baron-Van Evercooren Beatriz García-Díaz 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期296-301,共6页
Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.... Neuropathic pain is a severe and chronic condition widely found in the general population.The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients.During the processing of pain,the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation.Furthermore,the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies.Here,we will review the complex interplay between cells(satellite glial cells and inflammatory cells)and factors(cytokines,neurotrophic factors and genetic factors)that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain.More importantly,we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain. 展开更多
关键词 CYTOKINES dorsal root ganglia genetic factors neuropathic pain neurotrophic factors pharmacologic and nonpharmacologic therapies satellite glial cells sensory neurons
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings
7
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
Ferroptosis mechanism and Alzheimer's disease
8
作者 Lina Feng Jingyi Sun +6 位作者 Ling Xia Qiang Shi Yajun Hou Lili Zhang Mingquan Li Cundong Fan Baoliang Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1741-1750,共10页
Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evoluti... Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms.This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms.Ferroptosis is a classic regulatory mode of cell death.Extensive studies of regulatory cell death in Alzheimer’s disease have yielded increasing evidence that fe rroptosis is closely related to the occurrence,development,and prognosis of Alzheimer’s disease.This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferro ptosis in Alzheimer’s disease.Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer’s disease. 展开更多
关键词 Alzheimer’s disease apolipoprotein E Fe^(2+) ferroptosis glial cell glutathione peroxidase 4 imbalance in iron homeostasis lipid peroxidation regulated cell death system Xc^(-)
下载PDF
Effect of modified Wendan Decoction on enteric glia cells in depression model rats
9
作者 Ruiwen Song Yunsha Zhang +6 位作者 Pengjuan Xu Shanyan Yin Zidong Wen Shenjun Wang Ying Chen Lei Xu Liping Zhang 《TMR Pharmacology Research》 2021年第4期34-39,共6页
Background:To explore the effect of modified Wendan Decoction on expression of enteric glial cells in depression model rats.Methods:Eighteen rats were randomly divided into the Blank group,Model group,and modified Wen... Background:To explore the effect of modified Wendan Decoction on expression of enteric glial cells in depression model rats.Methods:Eighteen rats were randomly divided into the Blank group,Model group,and modified Wendan Decoction group(Decoction group).Depression was induced by isolation combined with chronic unpredictable mild stress in rats of all groups except for the Blank group.Changes of protein and mRNA expressions of the specific markers of enteric glial cells,glial fibrillary acidic protein,and S100 calcium-binding proteinβsubunit(S100β)in the stomach and colon tissues of rats in each group were detected respectively using immunohistochemistry and reverse transcription-polymerase chain reaction(RT-PCR).Results:Compared with the Blank group,the percentage of positive cells and the mRNA expression of GFAP and S100βwere increased in the Model group,and the difference was statistically significant(P<0.05);compared with the Model group,the percentage of positive cells and the mRNA expression of GFAP and S100βin gastrointestinal tissues of rats were decreased in the Decoction group,and the difference was statistically significant(P<0.05).Conclusion:The depression model rats developed hyperplasia,and enteric glial cells(EGCs)was activated.The mechanism of action of the Wendan Decoction on improving depression and promoting gastrointestinal motility may be achieved by inhibiting the hyperplasia and activation of EGCs in rats with depression. 展开更多
关键词 DEPRESSION Modified Wendan decoction enteric glial cells
下载PDF
Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors 被引量:9
10
作者 Jie Wang Wei-Wei Hu +1 位作者 Zhi Jiang Mei-Jiang Feng 《World Journal of Stem Cells》 SCIE CAS 2020年第5期323-338,共16页
Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progr... Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progressive loss of different neuronal subtypes.However,despite its increasing prevalence among the everincreasing aging population,little progress has been made in the coincident immense efforts towards development of therapeutic agents.Research interest has recently turned towards stem cells including stem cells-derived exosomes,neurotrophic factors,and their combination as potential therapeutic agents in neurodegenerative diseases.In this review,we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases,with an emphasis on the combination therapy. 展开更多
关键词 Neurodegenerative diseases Stem cells Brain-derived neurotrophic factor glial cell line-derived neurotrophic factor Nerve growth factor Combination therapy
下载PDF
Therapeutic potential of glial cell line-derived neurotrophic factor and cell reprogramming for hippocampal-related neurological disorders 被引量:3
11
作者 Priscila Chiavellini Martina Canatelli-Mallat +2 位作者 Marianne Lehmann Rodolfo G.Goya Gustavo R.Morel 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期469-476,共8页
Hippocampus serves as a pivotal role in cognitive and emotional processes,as well as in the regulation of the hypothalamus-pituitary axis.It is known to undergo mild neurodegenerative changes during normal aging and s... Hippocampus serves as a pivotal role in cognitive and emotional processes,as well as in the regulation of the hypothalamus-pituitary axis.It is known to undergo mild neurodegenerative changes during normal aging and severe atrophy in Alzheimer's disease.Furthermore,dysregulation in the hippocampal function leads to epilepsy and mood disorders.In the first section,we summarized the most salient knowledge on the role of glial cell-line-derived neurotrophic factor and its receptors focused on aging,cognition and neurodegenerative and hippocampal-related neurological diseases mentioned above.In the second section,we reviewed the therapeutic approaches,particularly gene therapy,using glial cell-line-derived neurotrophic factor or its gene,as a key molecule in the development of neurological disorders.In the third section,we pointed at the potential of regenerative medicine,as an emerging and less explored strategy for the treatment of hippocampal disorders.We briefly reviewed the use of partial reprogramming to restore brain functions,non-neuronal cell reprogramming to generate neural stem cells,and neural progenitor cells as source-specific neuronal types to be implanted in animal models of specific neurodegenerative disorders. 展开更多
关键词 AGING Alzheimer's disease cell reprogramming EPILEPSY gene therapy glial cell line-derived neurotrophic factor HIPPOCAMPUS major depression
下载PDF
Ji-Chuan decoction ameliorates slow transit constipation via regulation of intestinal glial cell apoptosis 被引量:3
12
作者 Xiu-Min Wang Li-Xia Lv +8 位作者 Yue-Si Qin Yu-Zhu Zhang Ni Yang Shu Wu Xiu-Wen Xia Hong Yang Hong Xu Ying Liu Wei-Jun Ding 《World Journal of Gastroenterology》 SCIE CAS 2022年第34期5007-5022,共16页
BACKGROUND Slow transit constipation(STC)is a common intestinal disease with increasing incidence.STC results from various factors,such as the enteric nervous system and metabolic changes.As a classical formula of tra... BACKGROUND Slow transit constipation(STC)is a common intestinal disease with increasing incidence.STC results from various factors,such as the enteric nervous system and metabolic changes.As a classical formula of traditional Chinese medicine,Ji-Chuan decoction(JCD)has been extensively and effectively used in STC treatment,yet its pharmacological mechanism remains unclear.AIM To explore the integrated regulatory pattern of JCD against STC through hyphenated techniques from metabolism,network pharmacology and molecular methods.METHODS STC model mice were generated by intragastric administration of compound diphenoxylate(10 mg/kg/d)for 14 d.The STC mice in the low dose of JCD(3.04 g/kg),middle dose of JCD(6.08 g/kg)and high dose of JCD(12.16 g/kg)groups were orally administered JCD solution once a day for 2 wk.The acetylcholine(ACH)level was examined by enzyme-linked immunosorbent assay.The pathological features of colon tissue were observed by hematoxylin and eosin staining.The differentially expressed metabolites and metabolic pathways were tested by nontargeted metabolomics.The main targets and core ingredients of JCD were identified by network pharmacology,and the expression of AKT was confirmed by immunohistochemistry.Finally,the pathways involved in JCD treatment were predicted using a combination of differentially expressed metabolites and targets,and intestinal glial cell apoptosis was demonstrated by immunofluorescence.RESULTS JCD significantly promoted intestinal motility,increased the levels of the excitatory neurotransmitter ACH and reduced intestinal inflammation in STC mice.Untargeted metabolomics results showed that JCD significantly restored metabolic dysfunction and significantly affected taurine and hypotaurine metabolism.Network pharmacology and molecular experiments showed that JCD regulates AKT protein expression,and the core component is quercetin.Combined analysis demonstrated that apoptosis may be an important mechanism by which JCD relieves constipation.Further experiments showed that JCD reduced enteric glial cell(EGC)apoptosis.CONCLUSION This work demonstrated that reducing EGC apoptosis may be the critical mechanism by which JCD treats STC.These findings call for further molecular research to facilitate the clinical application of JCD. 展开更多
关键词 Slow-transit constipation Ji-Chuan decoction Taurine and hypotaurine metabolism AKT Enteric glial cell APOPTOSIS
下载PDF
Dental pulp stem cells stimulate neuronal differentiation of PC12 cells 被引量:3
13
作者 Nessma Sultan Laila E.Amin +2 位作者 Ahmed R.Zaher Mohammed E.Grawish Ben A.Scheven 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1821-1828,共8页
Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was co... Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor(NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2(MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction(qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors(NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCsCM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls;however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed. 展开更多
关键词 brain-derived neurotrophic factor conditioned medium dental pulp stem cell glial cell line-derived nerve growth factor neurite outgrowth neurotrophic factor NEUROTROPHIN-3 phaeochromocytoma PC12 cell
下载PDF
Stem cell transplantation and/or adenoviral glial cell line-derived neurotrophic factor promote functional recovery in hemiparkinsonian rats 被引量:1
14
作者 May-Jywan Tsai Shih-Chieh Hung +5 位作者 Ching-Feng Weng Su-Fen Fan Dann-Ying Liou Wen-Cheng Huang Kang-Du Liu Henrich Cheng 《World Journal of Stem Cells》 SCIE 2021年第1期78-90,共13页
BACKGROUND Parkinson’s disease(PD)is a neurological disorder characterized by the progressive loss of midbrain dopamine(DA)neurons.Bone marrow mesenchymal stem cells(BMSCs)can differentiate into multiple cell types i... BACKGROUND Parkinson’s disease(PD)is a neurological disorder characterized by the progressive loss of midbrain dopamine(DA)neurons.Bone marrow mesenchymal stem cells(BMSCs)can differentiate into multiple cell types including neurons and glia.Transplantation of BMSCs is regarded as a potential approach for promoting neural regeneration.Glial cell line-derived neurotrophic factor(GDNF)can induce BMSC differentiation into neuron-like cells.This work evaluated the efficacy of nigral grafts of human BMSCs(hMSCs)and/or adenoviral(Ad)GDNF gene transfer in 6-hydroxydopamine(6-OHDA)-lesioned hemiparkinsonian rats.AIM To evaluate the efficacy of nigral grafts of hMSCs and/or Ad-GDNF gene transfer in 6-OHDA-lesioned hemiparkinsonian rats.METHODS We used immortalized hMSCs,which retain their potential for neuronal differentiation.hMSCs,preinduced hMSCs,or Ad-GDNF effectively enhanced neuronal connections in cultured neurons.In vivo,preinduced hMSCs and/or Ad-GDNF were injected into the substantia nigra(SN)after induction of a unilateral 6-OHDA lesion in the nigrostriatal pathway.RESULTS Hemiparkinsonian rats that received preinduced hMSC graft and/or Ad-GDNF showed significant recovery of apomorphine-induced rotational behavior and the number of nigral DA neurons.However,DA levels in the striatum were not restored by these therapeutic treatments.Grafted hMSCs might reconstitute a niche to support tissue repair rather than contribute to the generation of new neurons in the injured SN.CONCLUSION The results suggest that preinduced hMSC grafts exert a regenerative effect and may have the potential to improve clinical outcome. 展开更多
关键词 Stem cells TRANSPLANTATION Parkinson’s disease glial cell line-derived neurotrophic factor ADENOVIRUS NEUROREGENERATION
下载PDF
Ginsenoside Rb1 attenuates lipopolysaccharide-induced chronic neuroinflammation in mice by tuning glial cell polarization
15
作者 Yushu Liu Juan Li +4 位作者 Xi Wang Ying Liu Chao Zhang Hlupheka Chabalala Minke Tang 《Journal of Traditional Chinese Medical Sciences》 CAS 2022年第4期383-391,共9页
Objective:To evaluate whether ginsenoside Rb1(Rb1) can attenuate lipopolysaccharide(LPS)-induced chronic neuroinflammation in mice and to explore its relationship with glial cell polarization.Methods:Intraperitoneal i... Objective:To evaluate whether ginsenoside Rb1(Rb1) can attenuate lipopolysaccharide(LPS)-induced chronic neuroinflammation in mice and to explore its relationship with glial cell polarization.Methods:Intraperitoneal injection with an escalating dose of LPS was used to establish a chronic neuroinflammation model in mice.Once LPS was initiated,10 or 20 mg/kg Rbl,or sterile saline,was administered for 14 consecutive days.Open field test and beam walking test were used to monitor the changes in behavior.The concentration of cytokines in the serum and brain were used to monitor the systemic inflammation and neuroinflammation,respectively.Molecules specific to each glial cell phenotype were used to investigate glial cell polarization.Results:Mice in the LPS group had reduced spontaneous activities and impaired beam walking performance.Rbl obviously eased LPS-induced behavior distu rbances.Regarding the levels of serum cytokines,both tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) were significantly increased,while interleukin-10(IL-10) and transforming growth factor β(TGF-β) remarkably decreased after LPS treatment(all P <.001).Rb1 treatment significantly attenuated LPS-induced serum cytokine changes(all P <.05).The results of quantitative polymerase chain reaction and western blotting showed that the mRNA and protein expression levels of TNF-α and complement component 3(C3) in the brain were significantly increased after LPS treatment(all P<.01).Rbl treatment significantly inhibited LPS-induced inflammation in the brain(all P <.05).Glial cell polarization analysis showed that M1 and M2 microglia,and A1 astrocytes increased following LPS treatment,while A2 astrocytes decreased.Rb1 treatment reduced M1 and M2 microglia,and A1 astrocytes,and significantly increased A2 astrocytes.Conclusion:Rb1 can attenuate chronic neuroinflammation induced by LPS in mice,which may be partially attributable to its fine tuning of microglia and astrocyte polarization.Rb1 has potential value for treating neurodegenerative diseases. 展开更多
关键词 ASTROCYTES Chronic neuroinflammation Ginsenoside Rb1 glial cell polarization LIPOPOLYSACCHARIDE MICROGLIA Neurodegenerative diseases
下载PDF
The role of purinergic receptors in neural repair and regeneration after spinal cord injury
16
作者 Rui-Dong Cheng Wen Ren +1 位作者 Ben-Yan Luo Xiang-Ming Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1684-1690,共7页
Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural r... Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural repair and regeneration,are highly complex.Although there have been many studies on these mechanisms,there is no effective intervention for such injury.In spinal cord injury,neural repair and regeneration is an important part of improving neurological function after injury,although the low regenerative ability of nerve cells and the difficulty in axonal and myelin regeneration after spinal cord injury hamper functional recovery.Large amounts of ATP and its metabolites are released after spinal cord injury and participate in various aspects of functional regulation by acting on purinergic receptors which are widely expressed in the spinal cord.These processes mediate intracellular and extracellular signalling pathways to improve neural repair and regeneration after spinal cord injury.This article reviews research on the mechanistic roles of purinergic receptors in spinal cord injury,highlighting the potential role of purinergic receptors as interventional targets for neural repair and regeneration after spinal cord injury. 展开更多
关键词 glial cells glial scar inflammatory responses neural regeneration neural repair neural stem cells purinergic receptors spinal cord injury
下载PDF
Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson’s disease 被引量:2
17
作者 Tamara Andrea Alarcón Sarah Martins Presti-Silva +2 位作者 Ana Paula Toniato Simões Fabiola Mara Ribeiro Rita Gomes Wanderley Pires 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1450-1456,共7页
Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postu... Parkinson’s disease is the most common movement disorder,affecting about 1%of the population over the age of 60 years.Parkinson’s disease is characterized clinically by resting tremor,bradykinesia,rigidity and postural instability,as a result of the progressive loss of nigrostriatal dopaminergic neurons.In addition to this neuronal cell loss,Parkinson’s disease is characterized by the accumulation of intracellular protein aggregates,Lewy bodies and Lewy neurites,composed primarily of the proteinα-synuclein.Although it was first described almost 200 years ago,there are no disease-modifying drugs to treat patients with Parkinson’s disease.In addition to conventional therapies,non-pharmacological treatment strategies are under investigation in patients and animal models of neurodegenerative disorders.Among such strategies,environmental enrichment,comprising physical exercise,cognitive stimulus,and social interactions,has been assessed in preclinical models of Parkinson’s disease.Environmental enrichment can cause structural and functional changes in the brain and promote neurogenesis and dendritic growth by modifying gene expression,enhancing the expression of neurotrophic factors and modulating neurotransmission.In this review article,we focus on the current knowledge about the molecular mechanisms underlying environmental enrichment neuroprotection in Parkinson’s disease,highlighting its influence on the dopaminergic,cholinergic,glutamatergic and GABAergic systems,as well as the involvement of neurotrophic factors.We describe experimental pre-clinical data showing how environmental enrichment can act as a modulator in a neurochemical and behavioral context in different animal models of Parkinson’s disease,highlighting the potential of environmental enrichment as an additional strategy in the management and prevention of this complex disease. 展开更多
关键词 ACETYLCHOLINE brain-derived neurotrophic factor DOPAMINE environment enrichment gamma-aminobutyric acid glial cell line-derived neurotrophic factor GLUTAMATE molecular mechanisms Parkinson’s disease
下载PDF
Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson’s disease 被引量:1
18
作者 Chuan-Xi Tang Jing Chen +14 位作者 Kai-Quan Shao Ye-Hao Liu Xiao-Yu Zhou Cheng-Cheng Ma Meng-Ting Liu Ming-Yu Shi Piniel Alphayo Kambey Wei Wang Abiola Abdulrahman Ayanlaja Yi-Fang Liu Wei Xu Gang Chen Jiao Wu Xue Li Dian-Shuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1107-1117,共11页
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relations... Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson’s disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson’s disease. We then established a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson’s disease. 展开更多
关键词 cognitive impairment degree centrality dendritic spine dopamine transmission dopamine transporter glial cell line-derived neurotrophic factor Parkinson’s disease prefrontal cortex synaptic plasticity
下载PDF
Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model 被引量:1
19
作者 Maria Aleksandrovna Davleeva Ravil Rasimovich Garifulin +9 位作者 Farid Vagizovich Bashirov Andrei Aleksandrovich Izmailov Leniz Faritovich Nurullin Ilnur Ildusovich Salafutdinov Dilara Zilbarovna Gatina Dmitrij Nikolaevich Shcherbinin Andrei Aleksandrovich Lysenko Irina Leonidovna Tutykhina Maksim Mikhailovich Shmarov Rustem Robertovich Islamov 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1505-1511,共7页
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is prop... Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue.In our previous studies for delivering the therapeutic genes at the site of spinal cord injury,we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses(Ad5/35)carrying recombinant cDNA.In the present study,the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor(VEGF),glial cell line-derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury.Experimental animals were randomly divided into two groups of 4 pigs each:the therapeutic(infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35‐VEGF165,Ad5/35‐GDNF,and Ad5/35‐NCAM1)and control groups(infused with intact leucoconcentrate).The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed:(1)higher sparing of the grey matter and increased survivability of the spinal cord cells(lower number of Caspase-3-positive cells and decreased expression of Hsp27);(2)recovery of synaptophysin expression;(3)prevention of astrogliosis(lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells);(4)higher growth rates of regeneratingβIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region.These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF,GDNF,and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury.Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology. 展开更多
关键词 autologous genetically-enriched leucoconcentrate chimeric adenoviral vector gene therapy glial cell line-derived neurotrophic factor MINI-PIG neural cell adhesion molecule spinal cord contusion injury vascular endothelial growth factor
下载PDF
Regenerative peripheral nerve interface prevents neuroma formation after peripheral nerve transection
20
作者 Zheng Wang Xin-Zeyu Yi Ai-Xi Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期814-818,共5页
Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have invest... Neuroma formation after peripheral nerve transection often leads to severe neuropathic pain.Regenerative peripheral nerve interface has been shown to reduce painful neuroma in the clinic.However,no reports have investigated the underlying mechanisms,and no comparative animal studies on regenerative peripheral nerve interface and other means of neuroma prevention have been conducted to date.In this study,we established a rat model of left sciatic nerve transfection,and subsequently interfered with the model using the regenerative peripheral nerve interface or proximal nerve stump implantation inside a fully innervated muscle.Results showed that,compared with rats subjected to nerve stump implantation inside the muscle,rats subjected to regenerative peripheral nerve interface intervention showed greater inhibition of the proliferation of collagenous fibers and irregular regenerated axons,lower expressions of the fibrosis markerα-smooth muscle actin and the inflammatory marker sigma-1 receptor in the proximal nerve stump,lower autophagy behaviors,lower expressions of c-fos and substance P,higher expression of glial cell line-derived neurotrophic factor in the ipsilateral dorsal root ganglia.These findings suggested that regenerative peripheral nerve interface inhibits peripheral nerve injury-induced neuroma formation and neuropathic pain possibly via the upregulation of the expression of glial cell line-derived neurotrophic factor in the dorsal root ganglia and reducing neuroinflammation in the nerve stump. 展开更多
关键词 AUTOTOMY dorsal root ganglia glial cell line-derived neurotrophic factor nerve injury neuropathic pain peripheral nerve regeneration regenerative peripheral nerve interface retrograde axonal transport traumatic neuroma
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部