Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood ...Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.展开更多
Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of t...Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.展开更多
The present study co-cultured human embryonic olfactory ensheathJng cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal...The present study co-cultured human embryonic olfactory ensheathJng cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.展开更多
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic ...Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.展开更多
The neurotrophin and glial cell line-derived neurotrophic factor(GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system.Th...The neurotrophin and glial cell line-derived neurotrophic factor(GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system.The neurotrophin family,which includes nerve growth factor(NGF),NT-3,NT4/5 and BDNF,is also known for its ability to regulate the function of adult sensory neurons.Until recently,little was known concerning the role of the GNDF-family(that includes GDNF,artemin,neurturin and persephin) in adult sensory neuron function.Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function,that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo.Finally we discuss how these two families of growth factors may converge on a single membrane receptor,TRPV1,to produce long-lasting hyperalgesia.展开更多
Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were random...Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were randomly divided into control, pyridoxine, and pyridoxine + β-NGF groups. We observed chronological changes of morphology in the dorsal root ganglia in response to pyridoxine toxicity based on cresyl violet staining. The number of large neurons positive for cresyl violet was dramatically decreased after pyridoxine intoxication for 7 days in the dorsal root ganglia and the neuron number was gradually increased after pyridoxine withdrawal. In addition, we also investigated the effects of β-NGF gene therapy on neuronal plasticity in pyridoxine-induced neuropathic dogs. To accomplish this, tyrosine kinase receptor A(TrkA), βIII-tubulin and doublecortin(DCX) immunohistochemical staining was performed at 3 days after the last pyridoxine treatment. TrkA-immunoreactive neurons were dramatically decreased in the pyridoxine group compared to the control group, but strong TrkA immunoreactivity was observed in the small-sized dorsal root ganglia in this group. TrkA immunoreactivity in the dorsal root ganglia was similar between β-NGF and control groups. The numbers of βIII-tubulin-and DCX-immunoreactive cells decreased significantly in the pyridoxine group compared to the control group. However, the reduction of βIII-tubulin-and DCX-immunoreactive cells in the dorsal root ganglia in the β-NGF group was significantly ameliorated than that in the pyridoxine group. These results indicate that β-NGF gene therapy is a powerful treatment of pyridoxine-induced neuropathic damage by increasing the TrkA and DCX levels in the dorsal root ganglia. The experimental protocol was approved by the Institutional Animal Care and Use Committee(IACUC) of Seoul National University, South Korea(approval No. SNU-060623-1, SNU-091009-1) on June 23, 2006 and October 9, 2009, respectively.展开更多
The gold standard for treating peripheral nerve injuries that have large nerve gaps where the nerves cannot be directly sutured back together because it creates tension on the nerve,is to incorporate an autologous ner...The gold standard for treating peripheral nerve injuries that have large nerve gaps where the nerves cannot be directly sutured back together because it creates tension on the nerve,is to incorporate an autologous nerve graft.However,even with the incorporation of a nerve graft,generally patients only regain a small portion of function in limbs affected by the injury.Although,there has been some promising results using growth factors to induce more axon growth through the nerve graft,many of these previous therapies are limited in their ability to release growth factors in a sustained manner and tailor them to a desired time frame.The ideal drug delivery platform would deliver growth factors at therapeutic levels for enough time to grow axons the entire length of the nerve graft.We hypothesized that mineral coated microparticles(MCMs)would bind,stabilize and release biologically active glial cell-derived neurotrophic factor(GDNF)and nerve growth factor(NGF)in a sustained manner.Therefore,the objective of this study was to test the ability of MCMs releasing growth factors at the distal end of a 10 mm sciatic nerve graft,to induce axon growth through the nerve graft and restore hind limb function.After sciatic nerve grafting in Lewis rats,the hind limb function was tested weekly by measuring the angle of the ankle at toe lift-off while walking down a track.Twelve weeks after grafting,the grafts were harvested and myelinated axons were analyzed proximal to the graft,in the center of the graft,and distal to the graft.Under physiological conditions in vitro,the MCMs delivered a burst release of NGF and GDNF for 3 days followed by a sustained release for at least 22 days.In vivo,MCMs releasing NGF and GDNF at the distal end of sciatic nerve grafts resulted in significantly more myelinated axons extending distal to the graft when compared to rats that received nerve grafts without growth factor treatment.The rats with nerve grafts incorporated with MCMs releasing NGF and GDNF also showed significant improvement in hind limb function starting at 7 weeks postoperatively and continuing through 12 weeks postoperatively when compared to rats that received nerve grafts without growth factor treatment.In conclusion,MCMs released biologically active NGF and GDNF in a sustained manner,which significantly enhanced axon growth resulting in a significant improvement of hind limb function in rats.The animal experiments were approved by University of Wisconsin-Madison Animal Care and Use Committee(ACUC,protocol#M5958)on January 3,2018.展开更多
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for c...Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear.In this study,a model of intracerebral hemorrhage was produced by injecting 50μL autologous blood into the caudate nucleus in Wistar rats.Acupuncture at Baihui(DU20)and Qubin(GB7)acupoints was performed at a depth of 1.0 inch,12 hours after blood injection,once every 24 hours.The needle was rotated at 200 r/min for 5 minutes,For each 30-minute session,needling at 200 r/min was performed for three sessions,each lasting 5 minutes.For the positive control group,at 6 hours,and 1,2,3 and 7 days after induction of hemorrhage,the rats were intraperitoneally injected with 1 mL aniracetam(0.75 mg/mL),three times a day.The Bederson behavioral test was used to assess palsy in the contralateral limbs.Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia.Immunohistochemistry was performed to count the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Acupuncture effectively reduced hemorrhage and brain edema,elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia,and increased the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Together,these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors.The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center(approval No.2017061001)on June 10,2017.展开更多
From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added ...From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neo- natal rats with intrauterine growth restriction undergoing taurine supplement were obtained for fur- ther experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. Immu- nohistochemical staining revealed that taurine supplement increased glial cell line-derived neuro- trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.展开更多
Neuroprotection and neuroregeneration are two of the most promising disease-modifying ther- apies for the incurable and widespread Parkinson's disease. In Parkinson's disease, progressive degeneration of nigrostriat...Neuroprotection and neuroregeneration are two of the most promising disease-modifying ther- apies for the incurable and widespread Parkinson's disease. In Parkinson's disease, progressive degeneration of nigrostriatal dopaminergic neurons causes debilitating motor symptoms. Neurotrophic factors play important regulatory roles in the development, survival and maintenance of specific neuronal populations. These factors have the potential to slow down, halt or reverse the loss of nigrostriatal dopaminergic neurons in Parkinsoffs disease. Several neurotrophic fac- tors have been investigated in this regard. This review article discusses the neurodevelopmental roles and therapeutic potential of three dopaminergic neurotrophic factors: glial cell line-derived neurotrophic factor, neurturin and growth/differentiation factor 5.展开更多
Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progr...Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progressive loss of different neuronal subtypes.However,despite its increasing prevalence among the everincreasing aging population,little progress has been made in the coincident immense efforts towards development of therapeutic agents.Research interest has recently turned towards stem cells including stem cells-derived exosomes,neurotrophic factors,and their combination as potential therapeutic agents in neurodegenerative diseases.In this review,we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases,with an emphasis on the combination therapy.展开更多
The olfactory receptor neurons lining the nasal cavity have a remarkable capacity to regenerate throughout life. They are replenished continuously and their axons make new connections within the olfactory bulb. Howeve...The olfactory receptor neurons lining the nasal cavity have a remarkable capacity to regenerate throughout life. They are replenished continuously and their axons make new connections within the olfactory bulb. However, some factors such as head trauma and skull base surgery damage the olfactory nerve which lead to olfactory dysfunction. Losing the sense of smell has considerable effects on quality of life and life-expectancy. Therefore, there is a clear need to find a treatment for olfactory dysfunction. One such potential treatment is growth factor therapy which showed promising results in the spinal cord and brain injuries. The aim of the present study was to investigate whether combined delivery of two growth factors, vascular endothelial growth factor and platelet-derived growth factor treatment can improve the olfactory neurons regeneration in mice. The degeneration of the olfactory neurons was induced by unilateral bulbectomy. The treatment group received 1.5 μg of the combined growth factors intranasally, while the control injured group received saline. Growth factor treatment significantly increased the number of immature neurons at 5 and 7 days post injury and also the number of mature olfactory neurons at 10 and 14 days post bulbectomy. Regenerating axons extended over a larger volume in the operated cavity in the treatment group compared to control group at 14 days post bulbectomy. The growth factor treatment also significantly reduced astrocytic glia scar in the operated cavity. The results indicate that the combined delivery of the growth factors has the potential to improve olfactory dysfunction.展开更多
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alz...Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alzheimer’s disease,Parkinson’s disease,and ischemic stroke.The incidence of all these pathologies increases exponentially with age.Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies.Cognitive deficit and neurodegeneration,common features of aging-related pathologies,are related to the alteration of the activity and levels of neurotrophic factors,such as brain-derived neurotrophic factor,nerve growth factor,and glial cell-derived neurotrophic factor.For this reason,treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases.Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors,neurotrophins’binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies.Considering neurotrophins’crucial role in aging pathologies,here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.展开更多
基金This work was supported by the Key Program of Natural Science Foundation of Yunnan Province, China (No. 2003C0010Z).
文摘Objective To investigate the expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) in monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. Methods The monkeys were immediately removed brain after death in operation of group A (identical temperature perfusion group) and group B (ultraprofound hypothermia perfusion group). Immunohistochemical technique was used to determine frontal cellular expression of NGF and GDNF. Statistics were analyzed by ANOVA analyses with significance level at P 〈 0.05. Results The expressions of NGF and GDNF in the group B were significantly higher than those in the group A (P 〈 0.05). Conclusion NGF and GDNF increased significantly in the monkeys of resuscitation after selective cerebral ultraprofound hypothermia and blood flow occlusion. It may be a protective mechanism for neuron survival and neural function recovery.
基金This study was funded by the National Natural Science Foundation of China,No.81470200(to XJR).
文摘Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.
基金supported by the Science andTechnology Development Program of Guangdong Province, No.2009b030801329
文摘The present study co-cultured human embryonic olfactory ensheathJng cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.
文摘Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.
文摘The neurotrophin and glial cell line-derived neurotrophic factor(GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system.The neurotrophin family,which includes nerve growth factor(NGF),NT-3,NT4/5 and BDNF,is also known for its ability to regulate the function of adult sensory neurons.Until recently,little was known concerning the role of the GNDF-family(that includes GDNF,artemin,neurturin and persephin) in adult sensory neuron function.Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function,that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo.Finally we discuss how these two families of growth factors may converge on a single membrane receptor,TRPV1,to produce long-lasting hyperalgesia.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.NRF-2017R1A1A1A05000762)Cooperative Research Program for Agriculture Science and Technology Development,Rural Development Administration,Republic of Korea(No.PJ01395602 both to JYC)
文摘Beta-nerve growth factor(β-NGF) is known to be a major leading cause of neuronal plasticity. To identify the possible action mechanisms of β-NGF gene therapy for sciatic nerve recovery, experimental dogs were randomly divided into control, pyridoxine, and pyridoxine + β-NGF groups. We observed chronological changes of morphology in the dorsal root ganglia in response to pyridoxine toxicity based on cresyl violet staining. The number of large neurons positive for cresyl violet was dramatically decreased after pyridoxine intoxication for 7 days in the dorsal root ganglia and the neuron number was gradually increased after pyridoxine withdrawal. In addition, we also investigated the effects of β-NGF gene therapy on neuronal plasticity in pyridoxine-induced neuropathic dogs. To accomplish this, tyrosine kinase receptor A(TrkA), βIII-tubulin and doublecortin(DCX) immunohistochemical staining was performed at 3 days after the last pyridoxine treatment. TrkA-immunoreactive neurons were dramatically decreased in the pyridoxine group compared to the control group, but strong TrkA immunoreactivity was observed in the small-sized dorsal root ganglia in this group. TrkA immunoreactivity in the dorsal root ganglia was similar between β-NGF and control groups. The numbers of βIII-tubulin-and DCX-immunoreactive cells decreased significantly in the pyridoxine group compared to the control group. However, the reduction of βIII-tubulin-and DCX-immunoreactive cells in the dorsal root ganglia in the β-NGF group was significantly ameliorated than that in the pyridoxine group. These results indicate that β-NGF gene therapy is a powerful treatment of pyridoxine-induced neuropathic damage by increasing the TrkA and DCX levels in the dorsal root ganglia. The experimental protocol was approved by the Institutional Animal Care and Use Committee(IACUC) of Seoul National University, South Korea(approval No. SNU-060623-1, SNU-091009-1) on June 23, 2006 and October 9, 2009, respectively.
文摘The gold standard for treating peripheral nerve injuries that have large nerve gaps where the nerves cannot be directly sutured back together because it creates tension on the nerve,is to incorporate an autologous nerve graft.However,even with the incorporation of a nerve graft,generally patients only regain a small portion of function in limbs affected by the injury.Although,there has been some promising results using growth factors to induce more axon growth through the nerve graft,many of these previous therapies are limited in their ability to release growth factors in a sustained manner and tailor them to a desired time frame.The ideal drug delivery platform would deliver growth factors at therapeutic levels for enough time to grow axons the entire length of the nerve graft.We hypothesized that mineral coated microparticles(MCMs)would bind,stabilize and release biologically active glial cell-derived neurotrophic factor(GDNF)and nerve growth factor(NGF)in a sustained manner.Therefore,the objective of this study was to test the ability of MCMs releasing growth factors at the distal end of a 10 mm sciatic nerve graft,to induce axon growth through the nerve graft and restore hind limb function.After sciatic nerve grafting in Lewis rats,the hind limb function was tested weekly by measuring the angle of the ankle at toe lift-off while walking down a track.Twelve weeks after grafting,the grafts were harvested and myelinated axons were analyzed proximal to the graft,in the center of the graft,and distal to the graft.Under physiological conditions in vitro,the MCMs delivered a burst release of NGF and GDNF for 3 days followed by a sustained release for at least 22 days.In vivo,MCMs releasing NGF and GDNF at the distal end of sciatic nerve grafts resulted in significantly more myelinated axons extending distal to the graft when compared to rats that received nerve grafts without growth factor treatment.The rats with nerve grafts incorporated with MCMs releasing NGF and GDNF also showed significant improvement in hind limb function starting at 7 weeks postoperatively and continuing through 12 weeks postoperatively when compared to rats that received nerve grafts without growth factor treatment.In conclusion,MCMs released biologically active NGF and GDNF in a sustained manner,which significantly enhanced axon growth resulting in a significant improvement of hind limb function in rats.The animal experiments were approved by University of Wisconsin-Madison Animal Care and Use Committee(ACUC,protocol#M5958)on January 3,2018.
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金supported by the National Natural Science Foundation of China,Nos.81473764,81273824,30772840(to WZ)the Doctoral Fund of Ministry of Education of China,No.20102327110003(to WZ)+4 种基金the Natural Science Foundation of Heilongjiang Province of China,No.ZD201204(to WZ)the Special Fund for Technological Innovation Research of Harbin of China,No.2012RFXXS062(to WZ)the Doctoral Innovation Fund of Heilongjiang University of Chinese Medicine of China,No.2015bs03(to QXC)the Chunhui Plans Research Cooperation Project of China,No.Z2007-1-15010(to WZ)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China,No.UNPYSCT-2018234(to QXC)
文摘Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear.In this study,a model of intracerebral hemorrhage was produced by injecting 50μL autologous blood into the caudate nucleus in Wistar rats.Acupuncture at Baihui(DU20)and Qubin(GB7)acupoints was performed at a depth of 1.0 inch,12 hours after blood injection,once every 24 hours.The needle was rotated at 200 r/min for 5 minutes,For each 30-minute session,needling at 200 r/min was performed for three sessions,each lasting 5 minutes.For the positive control group,at 6 hours,and 1,2,3 and 7 days after induction of hemorrhage,the rats were intraperitoneally injected with 1 mL aniracetam(0.75 mg/mL),three times a day.The Bederson behavioral test was used to assess palsy in the contralateral limbs.Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia.Immunohistochemistry was performed to count the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Acupuncture effectively reduced hemorrhage and brain edema,elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia,and increased the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Together,these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors.The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center(approval No.2017061001)on June 10,2017.
基金funded by the National Natural Science Foundation of China,No.81170577
文摘From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg taurine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neo- natal rats with intrauterine growth restriction undergoing taurine supplement were obtained for fur- ther experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. Immu- nohistochemical staining revealed that taurine supplement increased glial cell line-derived neuro- trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.
基金supported by grants from the Irish Research Council(R13702 and R15897SVH/AS/G’OK)+3 种基金the Health Research Board of Ireland(HRA/2009/127GO’K/AS)Science Foundation Ireland(10/RFP/NES2786GO’K)
文摘Neuroprotection and neuroregeneration are two of the most promising disease-modifying ther- apies for the incurable and widespread Parkinson's disease. In Parkinson's disease, progressive degeneration of nigrostriatal dopaminergic neurons causes debilitating motor symptoms. Neurotrophic factors play important regulatory roles in the development, survival and maintenance of specific neuronal populations. These factors have the potential to slow down, halt or reverse the loss of nigrostriatal dopaminergic neurons in Parkinsoffs disease. Several neurotrophic fac- tors have been investigated in this regard. This review article discusses the neurodevelopmental roles and therapeutic potential of three dopaminergic neurotrophic factors: glial cell line-derived neurotrophic factor, neurturin and growth/differentiation factor 5.
基金Supported by the Social Development Project of Jiangsu Science and Technology Department,No.BE2015721。
文摘Neurodegenerative diseases,including Alzheimer’s disease,Parkinson’s disease,Huntington’s disease and amyotrophic lateral sclerosis,are a group of incurable neurological disorders,characterized by the chronic progressive loss of different neuronal subtypes.However,despite its increasing prevalence among the everincreasing aging population,little progress has been made in the coincident immense efforts towards development of therapeutic agents.Research interest has recently turned towards stem cells including stem cells-derived exosomes,neurotrophic factors,and their combination as potential therapeutic agents in neurodegenerative diseases.In this review,we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases,with an emphasis on the combination therapy.
基金supported by Queensland University of Technology Start Up Grant(to FC)a grant from the Clem Jones Foundation(to JASJ)
文摘The olfactory receptor neurons lining the nasal cavity have a remarkable capacity to regenerate throughout life. They are replenished continuously and their axons make new connections within the olfactory bulb. However, some factors such as head trauma and skull base surgery damage the olfactory nerve which lead to olfactory dysfunction. Losing the sense of smell has considerable effects on quality of life and life-expectancy. Therefore, there is a clear need to find a treatment for olfactory dysfunction. One such potential treatment is growth factor therapy which showed promising results in the spinal cord and brain injuries. The aim of the present study was to investigate whether combined delivery of two growth factors, vascular endothelial growth factor and platelet-derived growth factor treatment can improve the olfactory neurons regeneration in mice. The degeneration of the olfactory neurons was induced by unilateral bulbectomy. The treatment group received 1.5 μg of the combined growth factors intranasally, while the control injured group received saline. Growth factor treatment significantly increased the number of immature neurons at 5 and 7 days post injury and also the number of mature olfactory neurons at 10 and 14 days post bulbectomy. Regenerating axons extended over a larger volume in the operated cavity in the treatment group compared to control group at 14 days post bulbectomy. The growth factor treatment also significantly reduced astrocytic glia scar in the operated cavity. The results indicate that the combined delivery of the growth factors has the potential to improve olfactory dysfunction.
文摘Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alzheimer’s disease,Parkinson’s disease,and ischemic stroke.The incidence of all these pathologies increases exponentially with age.Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies.Cognitive deficit and neurodegeneration,common features of aging-related pathologies,are related to the alteration of the activity and levels of neurotrophic factors,such as brain-derived neurotrophic factor,nerve growth factor,and glial cell-derived neurotrophic factor.For this reason,treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases.Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors,neurotrophins’binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies.Considering neurotrophins’crucial role in aging pathologies,here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.