期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Learning‑Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular Subtyping of Gliomas
1
作者 Wenting Rui Shengjie Zhang +10 位作者 Huidong Shi Yaru Sheng Fengping Zhu YiDi Yao Xiang Chen Haixia Cheng Yong Zhang Ababikere Aili Zhenwei Yao Xiao‑Yong Zhang Yan Ren 《Phenomics》 2023年第3期243-254,共12页
This study aimed to explore the value of deep learning(DL)-assisted quantitative susceptibility mapping(QSM)in glioma grading and molecular subtyping.Forty-two patients with gliomas,who underwent preoperative T2 fluid... This study aimed to explore the value of deep learning(DL)-assisted quantitative susceptibility mapping(QSM)in glioma grading and molecular subtyping.Forty-two patients with gliomas,who underwent preoperative T2 fluid-attenuated inversion recovery(T2 FLAIR),contrast-enhanced T1-weighted imaging(T1WI+C),and QSM scanning at 3.0T magnetic resonance imaging(MRI)were included in this study.Histopathology and immunohistochemistry staining were used to determine glioma grades,and isocitrate dehydrogenase(IDH)1 and alpha thalassemia/mental retardation syndrome X-linked gene(ATRX)subtypes.Tumor segmentation was performed manually using Insight Toolkit-SNAP program(www.itksnap.org).An inception convolutional neural network(CNN)with a subsequent linear layer was employed as the training encoder to capture multi-scale features from MRI slices.Fivefold cross-validation was utilized as the training strategy(seven samples for each fold),and the ratio of sample size of the training,validation,and test dataset was 4:1:1.The performance was evalu-ated by the accuracy and area under the curve(AUC).With the inception CNN,single modal of QSM showed better perfor-mance in differentiating glioblastomas(GBM)and other grade gliomas(OGG,grade II–III),and predicting IDH1 mutation and ATRX loss(accuracy:0.80,0.77,0.60)than either T2 FLAIR(0.69,0.57,0.54)or T1WI+C(0.74,0.57,0.46).When combining three modalities,compared with any single modality,the best AUC/accuracy/F1-scores were reached in grading gliomas(OGG and GBM:0.91/0.89/0.87,low-grade and high-grade gliomas:0.83/0.86/0.81),predicting IDH1 mutation(0.88/0.89/0.85),and predicting ATRX loss(0.78/0.71/0.67).As a supplement to conventional MRI,DL-assisted QSM is a promising molecular imaging method to evaluate glioma grades,IDH1 mutation,and ATRX loss. 展开更多
关键词 Quantitative susceptibility mapping glioma classification Isocitrate dehydrogenase Alpha thalassemia/mental retardation syndrome X-linked gene Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部