期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Role of glioma stem cells in promoting tumor chemo- and radioresistance: A systematic review of potential targeted treatments
1
作者 Edoardo Agosti Marco Zeppieri +4 位作者 Mattia Ghidoni Tamara Ius Alessandro Tel Marco Maria Fontanella Pier Paolo Panciani 《World Journal of Stem Cells》 SCIE 2024年第5期604-614,共11页
BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy.Glioma stem cells(GSCs),a subset within tumors,contribute to resistance,tumor heterogeneity,... BACKGROUND Gliomas pose a significant challenge to effective treatment despite advancements in chemotherapy and radiotherapy.Glioma stem cells(GSCs),a subset within tumors,contribute to resistance,tumor heterogeneity,and plasticity.Recent studies reveal GSCs’role in therapeutic resistance,driven by DNA repair mechanisms and dynamic transitions between cellular states.Resistance mechanisms can involve different cellular pathways,most of which have been recently reported in the literature.Despite progress,targeted therapeutic approaches lack consensus due to GSCs’high plasticity.AIM To analyze targeted therapies against GSC-mediated resistance to radio-and chemotherapy in gliomas,focusing on underlying mechanisms.METHODS A systematic search was conducted across major medical databases(PubMed,Embase,and Cochrane Library)up to September 30,2023.The search strategy utilized relevant Medical Subject Heading terms and keywords related to including“glioma stem cells”,“radiotherapy”,“chemotherapy”,“resistance”,and“targeted therapies”.Studies included in this review were publications focusing on targeted therapies against the molecular mechanism of GSC-mediated re-sistance to radiotherapy resistance(RTR).RESULTS In a comprehensive review of 66 studies on stem cell therapies for SCI,452 papers were initially identified,with 203 chosen for full-text analysis.Among them,201 were deemed eligible after excluding 168 for various reasons.The temporal breakdown of studies illustrates this trend:2005-2010(33.3%),2011-2015(36.4%),and 2016-2022(30.3%).Key GSC models,particularly U87(33.3%),U251(15.2%),and T98G(15.2%),emerge as significant in research,reflecting their representativeness of glioma characteristics.Pathway analysis indicates a focus on phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin(mTOR)(27.3%)and Notch(12.1%)pathways,suggesting their crucial roles in resistance development.Targeted molecules with mTOR(18.2%),CHK1/2(15.2%),and ATP binding cassette G2(12.1%)as frequent targets underscore their importance in overcoming GSC-mediated resistance.Various therapeutic agents,notably RNA inhibitor/short hairpin RNA(27.3%),inhibitors(e.g.,LY294002,NVP-BEZ235)(24.2%),and monoclonal antibodies(e.g.,cetuximab)(9.1%),demonstrate versatility in targeted therapies.among 20 studies(60.6%),the most common effect on the chemotherapy resistance response is a reduction in temozolomide resistance(51.5%),followed by reductions in carmustine resistance(9.1%)and doxorubicin resistance(3.0%),while resistance to RTR is reduced in 42.4%of studies.CONCLUSION GSCs play a complex role in mediating radioresistance and chemoresistance,emphasizing the necessity for precision therapies that consider the heterogeneity within the GSC population and the dynamic tumor microenvironment to enhance outcomes for glioblastoma patients. 展开更多
关键词 Glioma stem cells CHEMORESISTANCE RADIORESISTANCE Molecular pathways Targeted therapies Systematic review
下载PDF
Effect of Octadecadienoic Acid on Proliferation and Apoptosis of Glioma Cells and Its Mechanism
2
作者 Mingren XIE Xia YUAN +2 位作者 Shan QI Lei YU Farong YU 《Medicinal Plant》 CAS 2023年第4期24-26,34,共4页
[Objectives] To explore the inhibitory effect of octadecadienoic acid (ODA) on proliferation and apoptosis of glioma cells and its mechanism. [Methods] Cultured human glioma cells (cell density 2×10^(6) cells/L) ... [Objectives] To explore the inhibitory effect of octadecadienoic acid (ODA) on proliferation and apoptosis of glioma cells and its mechanism. [Methods] Cultured human glioma cells (cell density 2×10^(6) cells/L) were divided into three groups: solvent control group (DMSO, 30 μL/L), 5-FU group (10 mg/L) and octadecadienoic acid group (0.3, 0.6, 1.2 mg/L). The toxic effects of ODA on glioma cells were detected by trypan blue and thiazolium blue (MTT). The expression of P53, PI3K, P21, PKB/Akt and caspase-9 protein in glioma cells were detected by enzyme-linked immunosorbent assay (ELISA). [Results] The cell count under optical microscope showed that the inhibition rate of cell proliferation in low, medium and high dose ODA groups and 5-FU group was significantly higher than that in solvent control group ( P <0.01), but there was no significant difference compared with 5-FU group ( P >0.05). The results of MTT showed that compared with the solvent control group, the inhibition rate of cell proliferation in low, medium and high dose ODA groups and 5-FU group significantly increased ( P <0.01);compared with 5-FU group, the inhibition rate of cell proliferation in high dose ODA group significantly increased ( P <0.01). The results of flow cytometry showed that compared with the solvent control group, the number of cells in G_(0)/G_(1) phase increased significantly ( P <0.05, P <0.01), the number of cells in G_(2)/M phase decreased significantly ( P <0.01) and the apoptosis rate increased significantly ( P <0.01) in the low, medium and high dose ODA groups and 5-FU group;compared with 5-FU group, the number of cells in G_(2)/M phase decreased significantly ( P <0.01) and the apoptosis rate increased significantly ( P <0.01) in ODA group. ELISA testing results showed that the expression levels of P53, P13K and PKB/Akt in low, medium and high dose ODA groups and 5-FU group were significantly lower than those in solvent control group ( P <0.01), and only the expression level of protein in high dose ODA group was significantly lower than that in 5-FU group ( P <0.01);the expression levels of P21 and caspase-9 in low, medium and high dose ODA groups and 5-FU group were significantly higher than those in solvent control group ( P <0.05, P <0.01), but the expression level of protein in high dose ODA group was significantly higher than that in 5-FU group ( P <0.01). [Conclusions] ODA can obviously inhibit the proliferation of glioma cells and induce apoptosis. The mechanism is related to up-regulation of P21, caspase-9, down-regulation of P53, PI3K, PKB/Akt, inhibition of cell division cycle and decrease of PI3K-Akt signal transduction pathway. 展开更多
关键词 Octadecadienoic acid Glioma cells Inhibition effect APOPTOSIS
下载PDF
MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells 被引量:15
3
作者 Ping Li Xiaoming Lu +6 位作者 Yingyi Wang Lihua Sun Chunfa Qian Wei Yan Ning Liu Yongping You Zhen Fu 《The Journal of Biomedical Research》 CAS 2010年第6期436-443,共8页
MicroRNAs regulate self renewal and differentiation of cancer stem cells.There,we sought to identify the expression of miR-181b in glioma stem cells and investigate the biological effect of miR-181b on glioma stem cel... MicroRNAs regulate self renewal and differentiation of cancer stem cells.There,we sought to identify the expression of miR-181b in glioma stem cells and investigate the biological effect of miR-181b on glioma stem cells in this study.MiR-181b expression was measured by real-time PCR in glioma stem cells isolated from U87 cells by FACS sorting.After miR-181b was overexpressed in U87 glioma stem cells by miR-181b lentiviral expression vector and/or treatment of temozolomide,secondary neurosphere assay,soft agar colony assay and MTT assay were performed.Compared with U87 cells,the expression of miR-181b was significantly decreased in U87 glioma stem cells.Overexpression of miR-181b decreased neurosphere formation by U87 glioma stem cells in vitro and suppressed colony formation in soft agar,and the cell growth inhibition rates increased in a time-dependent manner in U87 glioma stem cells infected with miR-181b lentivirus.Furthermore,miR-181b had a synergistic effect on temozolomide-induced inhibition of secondary neurosphere and soft agar colony,and on cell growth inhibition rates.MiR-181b functions as a tumor suppressor that suppresses proliferation and reduces chemoresistance to temozolomide in glioma stem cells. 展开更多
关键词 miR-181b glioma stem cells PROLIFERATION CHEMORESISTANCE
下载PDF
Apoptosis in glioma-bearing rats after neural stem cell transplantation 被引量:5
4
作者 Hua Li Zhenjun Chen Shaopeng Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第19期1793-1802,共10页
Abnormal activation of the Ras/Raf/Mek/Erk signaling cascade plays an important role in glioma. Inhibition of this aberrant activity could effectively hinder glioma cell proliferation and promote cell apoptosis. To in... Abnormal activation of the Ras/Raf/Mek/Erk signaling cascade plays an important role in glioma. Inhibition of this aberrant activity could effectively hinder glioma cell proliferation and promote cell apoptosis. To investigate the mechanism of gJioblastoma treatment by neural stem ceiJ trans- plantation with respect to the Ras/Raf/Mek/Erk pathway, C6 glioma cells were prepared in sus- pension and then infused into the rat brain to establish a glioblastoma model. Neural stem cells isolated from fetal rats were then injected into the brain of this glioblastoma model. Results showed that Raf-1, Erk and Bcl-2 protein expression significantly increased, while Caspase-3 protein expression decreased. After transplantation of neural stem cells, Raf-1, Erk and Bcl-2 protein expression significantly decreased, while Caspase-3 protein expression significantly in-creased. Our findings indicate that transplantation of neural stem cells may promote apoptosis of glioma cells by inhibiting Ras/Raf/Mek/Erk signaling, and thus may represent a novel treatment approach for glioblastoma. 展开更多
关键词 neural regeneration stem cells Ras/Raf/Mek/Erk signaling pathway neural stem cells glioblas-toma C6 glioma cells Caspase-3 Bcl-2 APOPTOSIS brain tumor NEUROREGENERATION
下载PDF
Lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel for intracellular drug delivery to C6 glioma cells with P-gp inhibition and its tumor targeting 被引量:4
5
作者 Bo Tang Guihua Fang +5 位作者 Ying Gao Yi Liu Jinwen Liu Meijuan Zou Lihong Wang Gang Cheng 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2015年第5期363-371,共9页
Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumve... Successful chemotherapy with paclitaxel(PTX)is impeded by multidrug resistance(MDR)in tumor cells.In this study,lipid-albumin nanoassemblies co-loaded with borneol and paclitaxel(BOR/PTX LANs)were prepared to circumvent MDR in C6 glioma cells.The physiochemical properties including particle size,encapsulation efficiency and morphology were evaluated in vitro.Quantitative and qualitative investigations of cellular uptake were carried out in C6 glioma cells.The cytotoxicity of the BOR/PTX LANs was determined by MTT assay.After that,the tumor targeting was also evaluated in C6 glioma bearing mice by in vivo imaging analysis.BOR/PTX LANs have a higher entrapment efficiency(90.4±1.2%),small particle size(107.5±3.2 nm),narrow distribution(P.I.=0.171±0.02).The cellular uptake of PTX was significantly increased by BOR/PTX LANs compared with paclitaxel loaded lipidalbumin nanoassemblies(PTX LANs)in quantitative research.The result was further confirmed by confocal laser scanning microscopy qualitatively.The cellular uptake was energy-,timeand concentration-dependent,and clathrin-and endosome/lysosome-associated pathways were involved.The BOR/PTX LANs displayed a higher cytotoxicity agaist C6 glioma cells in comparion with PTX LANs and Taxol.Moreover,the encapsulation of BOR in LANs obviously increased the accumulation of the drug in tumor tissues,demonstrating the tumor targeted ability of BOR/PTX LANs.These results indicated that BOR/PTX LANs could overcome MDR by combination of drug delivery systems and P-gp inhibition,and shown the potential for treatment of gliomas. 展开更多
关键词 BORNEOL PACLITAXEL Lipid-albumin nanoassemblies C6 glioma cells P-gp inhibition
下载PDF
Research on human glioma stem cells in China 被引量:2
6
作者 Yao-dong Zhao Quan-bin Zhang +8 位作者 Hua Chen Xi-feng Fei Yun-tian Shen Xiao-yan Ji Jia-wei Ma Ai-dong Wang Jun Dong Qing Lan Qiang Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1918-1926,共9页
Research on human glioma stem cells began early in the 21st century and since then has become a rapidly growing research field with the number of publications increasing year by year. The research conducted by our div... Research on human glioma stem cells began early in the 21st century and since then has become a rapidly growing research field with the number of publications increasing year by year. The research conducted by our diverse group of investigators focused primarily on cell culture techniques, molecular regulation, signaling pathways, cancer treatment, the stem cell microenvironment and the cellular origin and function of glioma stem cells. In particular, we put forward our view that there are inverse or forward transformations among neural stem cells, glial cells and glioma stem cells in glioma tissues under certain conditions. Based on the background of the progress of international research on human glioma stem cells, we aim to share our progress and current findings of human glioma stem cell research in China with colleagues around the world. 展开更多
关键词 nerve regeneration glioma stem cells China cell culture molecular characteristics cellular origin cell function MICROENVIRONMENT molecular targeted therapy CHEMOTHERAPY RADIOTHERAPY neural regeneration
下载PDF
SOX transcription factors and glioma stem cells:Choosing between stemness and differentiation 被引量:2
7
作者 Milena Stevanovic Natasa Kovacevic-Grujicic +2 位作者 Marija Mojsin Milena Milivojevic Danijela Drakulic 《World Journal of Stem Cells》 SCIE 2021年第10期1417-1445,共29页
Glioblastoma(GBM)is the most common,most aggressive and deadliest brain tumor.Recently,remarkable progress has been made towards understanding the cellular and molecular biology of gliomas.GBM tumor initiation,progres... Glioblastoma(GBM)is the most common,most aggressive and deadliest brain tumor.Recently,remarkable progress has been made towards understanding the cellular and molecular biology of gliomas.GBM tumor initiation,progression and relapse as well as resistance to treatments are associated with glioma stem cells(GSCs).GSCs exhibit a high proliferation rate and self-renewal capacity and the ability to differentiate into diverse cell types,generating a range of distinct cell types within the tumor,leading to cellular heterogeneity.GBM tumors may contain different subsets of GSCs,and some of them may adopt a quiescent state that protects them against chemotherapy and radiotherapy.GSCs enriched in recurrent gliomas acquire more aggressive and therapy-resistant properties,making them more malignant,able to rapidly spread.The impact of SOX transcription factors(TFs)on brain tumors has been extensively studied in the last decade.Almost all SOX genes are expressed in GBM,and their expression levels are associated with patient prognosis and survival.Numerous SOX TFs are involved in the maintenance of the stemness of GSCs or play a role in the initiation of GSC differentiation.The fine-tuning of SOX gene expression levels controls the balance between cell stemness and differentiation.Therefore,innovative therapies targeting SOX TFs are emerging as promising tools for combatting GBM.Combatting GBM has been a demanding and challenging goal for decades.The current therapeutic strategies have not yet provided a cure for GBM and have only resulted in a slight improvement in patient survival.Novel approaches will require the fine adjustment of multimodal therapeutic strategies that simultaneously target numerous hallmarks of cancer cells to win the battle against GBM. 展开更多
关键词 GLIOBLASTOMA SOX transcription factors Glioma stem cells STEMNESS DIFFERENTIATION
下载PDF
Growth and radiosensitivity of irradiated human glioma cell progeny 被引量:1
8
作者 Chao Li Li Li +1 位作者 Changshao Xu Juying Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第5期542-545,共4页
BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggeste... BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases. OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44. DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006. MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation. METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10 . The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2, 6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media. MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle. RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P = 0.052). Compared to these three groups, the PDT of the SHG-44 cell group was significantly difference (F = 7.878, P 〈 0.002). SHG-44 cell clone ratewas 26.5%, and SHG-44-10 cell group was 15.5%. The SHG-44-10 cell group also exhibited radiosensitivity, but was less than the radiosensitivity of the SHG-44 cell group. Compared to the SHG-44 cell group, the ratio of the G2/M phase was decreased in the SHG-44-10 cell group, and the radio of S phase was increased. The SHG-44 and SHG-44-10 cell groups were irradiated with 8 Gy. After 12 hours, the G2/M ratio was compared to pre-irradiation times, indicating a significantly higher ratio in the pre-irradiated groups (P 〈 0.01). The cells between S HG-44 and SHG-44-10 groups were harvested 12 hours after irradiation: G2 phase of SHG-44-10 cells was arrested and the G2/M ratio was increased, which was intensified with increasing irradiation doses. CONCLUSION: In the present study, the proliferation delay and decreased radiosensitivity were confirmed in progeny of irradiated human glioma cells, and radiosensitivity was dose-dependent. 展开更多
关键词 glioma cell line SHG-44 IRRADIATION progenitor cell RADIOSENSITIVITY cell cycle
下载PDF
Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells 被引量:1
9
作者 Zan Wang Mingxian Li +4 位作者 Hongmei Meng Min Huang Weihong Lin Li Cui Shao Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第18期1365-1369,共5页
Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensi... Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells. 展开更多
关键词 ANTIGLIOMATIN C6 glioma cells chloride channels osmotic pressure whole-cell patch-clamp recording
下载PDF
Isolation,cultivation and identification of brain glioma stem cells by magnetic bead sorting 被引量:1
10
作者 Xiuping Zhou Chao Zheng +3 位作者 Qiong Shi Xiang Li Zhigang Shen Rutong Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第13期985-992,共8页
This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening.... This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening. Furthermore, the proliferation, differentiation and self-renewal biological features of brain glioma stem cells were identified. Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated. Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability, and expressed the stem cell-specific markers CD133 and nestin. After incubation with fetal bovine serum, the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly, indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons. Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells. These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors. 展开更多
关键词 brain glioma stem cells CD133 NESTIN immunomagnetic beads glial fibrillary acidic protein microtubule associated protein 2 neural regeneration
下载PDF
Expression of the B7 - related molecule B7 - H1 by glioma cells: a potential mechanism of immune paralysis 被引量:37
11
作者 Wintterle S Schreiner B +5 位作者 Mitsdoerffer M Schneider D Chen Meyermann R Weller M Wiendl H 《中国神经肿瘤杂志》 2003年第4期241-241,共1页
Human glioblastoma is a highly lethal tumor that is known for its immune inhibitory capabilities.B7-homologue l(B7-H 1),a recently identified homologue of B7.1/2(CD80/86),has been described to exert costimulatoryand i... Human glioblastoma is a highly lethal tumor that is known for its immune inhibitory capabilities.B7-homologue l(B7-H 1),a recently identified homologue of B7.1/2(CD80/86),has been described to exert costimulatoryand immune regulatory functions.We investigated the expression and the functional activity of B7-H 1 in humanglioma cells in vitro and in vivo.Although lacking B7.1/2(CD80/86),all 12 glioma cel1 1ines constitutivelyexpressed B7-H1 mRNA and protein.Exposure to IFN-gamma strongly enhanced B7-H 1 expression.Im- 展开更多
关键词 of related molecule B7 H1 by glioma cells as by Expression of the B7
下载PDF
Comparison of Hsps Expression after Radio-frequency Field Exposure in Three Human Glioma Cell Lines 被引量:1
12
作者 GUI -RONG DING, XIAO-WU WANG, KANG-CHU LI, LIAN-BO QIU, SHENG-LONG XU, JUAN TAN, AND GUO-ZHEN GUO1 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi’an 710032, Shaanxi, China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2009年第5期374-380,共7页
Objective To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). Methods Cells were expos... Objective To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). Methods Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. Results The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or HspT0 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. Conclusion The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells. 展开更多
关键词 Radio-frequency field Heat shock protein 70 Heat shock protein 27 Protein expression Phosphorylated Hsp27 Glioma cells
下载PDF
Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia - induced cell death 被引量:4
13
作者 Steinbach JP Klumpp A +1 位作者 Wolburg H Weller M 《中国神经肿瘤杂志》 2004年第1期22-22,共1页
Epidermal growth factor receptor(EGFR)signaling has become an importanttarget for drug development becauseEGFR signaling enhances tumor cell proliferation,migration,and invasion and inhibits apoptosis.However,theresul... Epidermal growth factor receptor(EGFR)signaling has become an importanttarget for drug development becauseEGFR signaling enhances tumor cell proliferation,migration,and invasion and inhibits apoptosis.However,theresults of clinical trials using EGFR inhibitors in patients with solid tumors have been disappointing.Here,wereport a protective effect of the EGFR inhibitors AG1478 and PD153035 against cell death induced by acute hy-poxia,which contrasts with their proapoptotic effects under normoxia.Under hypoxic conditions,both agents re- 展开更多
关键词 EGFR Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia induced cell death
下载PDF
Exogenous p16 gene therapy combined with X-ray irradiation suppresses the growth of human glioma cells
14
作者 Hongbing Ma Zhengli Di +2 位作者 Minghua Bai Hongtao Ren Zongfang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第34期2708-2712,共5页
In this study, we infected human glioma U251 cells with a replication-defective recombinant adenovirus carrying the p16 gene. This adenovirus constructed was able to transfect exogenous p16 into the human glioma cells... In this study, we infected human glioma U251 cells with a replication-defective recombinant adenovirus carrying the p16 gene. This adenovirus constructed was able to transfect exogenous p16 into the human glioma cells efficiently, and direct a high level of p16 protein expression. Tumor-inhibition experiments demonstrated that treatment with the adenovirus-p16 significantly inhibited the growth of glioma cells in vitro as well as the in vivo development of tumors in nude mice bearing a brain glioma. The combination of adenovirus-p16 gene treatment and X-ray irradiation resulted in a greater inhibition of tumor growth. Adenovirus-mediated p16 gene therapy conferred a significant antitumor effect against human glioma cells both in vitro and in vivo, and that there was a synergistic effect when X-ray irradiation was also used. 展开更多
关键词 adenovirus vector gene therapy glioma cells P16 RADIOTHERAPY tumor neuralregeneration
下载PDF
Transient axonal glycoprotein-1 induces apoptosisrelated gene expression without triggering apoptosis in U251 glioma cells
15
作者 Haigang Chang Shanshan Song +7 位作者 Zhongcan Chen Yaxiao Wang Lujun Yang Mouxuan Du Yiquan Ke Ruxiang Xu Baozhe Jin Xiaodan Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第5期519-525,共7页
Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro- tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer... Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro- tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer's disease. In this study, we examined the effects of transient axonal glyco- protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep- tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells. 展开更多
关键词 nerve regeneration brain injury glioma cells transient axonal glycoprotein-1 APP in- tracellular domain p53 epidermal growth factor receptor NSFC grant neural regeneration
下载PDF
Effects of selective cyclooxygenase-2 inhibitor on C6 glioma cell proliferation and apoptosis
16
作者 Shiwen Guo Tao Li Hongmin Che Wenzhi Li Minxue Lian Yuliang Han 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第11期923-927,共5页
BACKGROUND: Studies have shown that cyclooxygenase-2 is associated with proliferation and apoptosis of glioma cells. OBJECTIVE: To investigate the effects of selective cyclooxygenase-2 inhibitor celecoxib on prolife... BACKGROUND: Studies have shown that cyclooxygenase-2 is associated with proliferation and apoptosis of glioma cells. OBJECTIVE: To investigate the effects of selective cyclooxygenase-2 inhibitor celecoxib on proliferation and apoptosis of C6 glioma cells in vitro. DESIGN, TIME AND SETTING: A cellular, molecular, controlled study was performed at the Central Laboratory and Room of Electron Microscope, Medical School, Xi'an Jiaotong University, China from March 2007 to March 2008. MATERIALS: C6 glioma cells during in vitro log phase were assigned to control and experimental groups. Celecoxib (Pfizer, USA), dimethyl sulfoxide (Sigma, USA), and MTT (Sigma, USA) were used for this study. METHODS: The control group was subdivided into blank control and dimethyl sulfoxide control groups. C6 glioma cells in the blank control and dimethyl sulfoxide control groups were incubated in Dulbecco's modified Eagle's medium supplemented with 10% calf serum and 0.3% dimethyl sulfoxide respectively. C6 glioma cells in the experimental group were separately treated with 60, 80 and 100 μmol/L celecoxib. MAIN OUTCOME MEASURES: Activity of C6 glioma cells was examined by MTT assay. C6 glioma cell cycle and apoptosis were determined by annexin V-fluorescein isothiocyanate/propidium iodide double-staining, followed by flow cytometry. Morphology and ultrastructure of C6 glioma cells were observed with an inverted microscope and a transmission electron microscope, respectively. RESULTS: Compared with the blank control group, cell density was reduced, adherence ability weakened, and irregular nuclei were visible, with the presence of chromatin condensation, margination, and some apoptotic bodies in the experimental group. Activity of C6 glioma cells was significantly decreased (P 〈 0.05), cell number was reduced during S phase, cell number was significantly increased during G2/M phase (P 〈 0.01 ), and the apoptotic rate was significantly increased (P 〈 0.05) in the experimental group. These results were displayed in a dose- and time-dependent fashion. The outcomes were obvious in the 100 IJmol/L celecoxib group following 72 hours of treatment. CONCLUSION: Celecoxib blocked proliferation and induced apoptosis of C6 glioma cells in a dose- and time-dependent fashion. 展开更多
关键词 CELECOXIB C6 glioma cells PROLIFERATION APOPTOSIS
下载PDF
THE EFFECT OF ANTISENSE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) RNA ON THE PROLIFERATION OF HUMAN GLIOMA CELLS AND INDUCTION OF CELL APOPTOSIS
17
作者 浦佩玉 刘旭文 +2 位作者 刘爱学 王春艳 王广秀 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1999年第3期164-168,共5页
Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot an... Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot analysis, in situ hybridization and immunohistochemical staining were used to detect the integration and expression of antisense EGFR constructs. MTT assay and the average number of AgNOR for evaluation of cell proliferation, and the TUNEL method and ultrastructural change for observation of cell apoptosis. Results: Exogenous antisense EGFR cDNA was integrated into the genome of glioma cells and highly expressed, which resulted in a dramatic decrease of endogenous EGFR mRNA and GEPR protein levels. Clones with high expression of the antisense construct showed a lower proliferation activity and the induction of apoptosis in vitro. Conclusion: This study suggests that EGFR plays an important role in the genesis of gliomas; it may be used as a target for antisense gene therapy of gliomas. 展开更多
关键词 Glioma cells Antisense EGFR RNA PROLIFERATION Apoptosis
下载PDF
RNA interference affects tumorigenicity and expression of insulin-like growth factor-1,insulin-like growth factor-1 receptor,and basic fibroblast growth factor-2 in rat C6 glioma cells
18
作者 Wanli Dong Jin Hu +3 位作者 Shaoyan Hu Yuanyuan Wang Juean Jiang Youxin Jin 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第8期597-605,共9页
BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate si... BACKGROUND: Human gliomas are more likely to express basic fibroblast growth factor-2 (FGF-2) insulin-like growth factor-1(IGF-1), and IGF-1 receptor (IGF-1R) than normal brain tissue. These factors activate signal transduction systems of Ras/MAPK and PI3K/Akl, which promote glioma growth. OBJECTIVE: To utilize RNA interference (RNAi) technique to down-regulate FGF-2, IGF-1, and IGF-1R gene expression, and to investigate the effects of these genes on rat C6 glioma cells, as well as the feasibility of RNAi for treating glioma. DESIGN, TIME AND SETTING: This neurooncological, randomized, controlled, in vivo and in vitro experiment, which used RNAi methodology, was performed at the Laboratory of Molecular Biology, Institute of Biochemistry, Chinese Academy of Sciences between August 2005 and February 2008. MATERIALS: Rat C6 cell lines were purchased from Shanghai Institute of Cellular Biology Affiliated to Chinese Academy of Sciences. Small interfering RNA (siRNA) was synthesized by Shanghai GenePharma. Anti-IGF-1, anti-IGF-1R, anti-FGF-2, anti-mouse and anti-rabbit IgG G1-HRP antibodies were provided by Santa Cruz Biotechnology, USA. Four to six week-old BALB/c nude mice were purchased from the Laboratory Animal Center, Chinese Academy of Sciences. METHODS: C6 glioma cells were transfected with siRNA, which was chemically synthesized in vitro to correspond to endogenous FGF-2, IGF-1, and IGF-1R genes. The inhibition ratio of targeting mRNA expression was detected by semiquantitative RT-PCR, and protein expression was determined by Western blot analysis. C6 glioma cell proliferation was observed using a growth curve C6 glioma cell apoptosis rate and cell cycle were detected by flow cytometry. C6 glioma cell growth regression was observed by transwell migration assay. In addition, nude mouse subcutaneous tumor models were used in this study. For studying the anti-tumor effects of IGF-1 and IGF-1R siRNA, two blank control groups, with six mice each, were set up: A (2.5 μg siRNA was injected one week after C6 cells were inoculated, Le., when tumor volume reached 8 mm × 8 mm) and B (siRNA was injected at the same time with C6 cells were inoculated. To study the effects of FGF-2 siRNA, the groups consisted of a blank control group, negative control group, 2.6 μg siRNA group, 4 μg siRNA group, and 5.3 μg siRNA group, with six mice each. MAIN OUTCOME MEASURES: mRNA and protein inhibition ratio of FGF-2, IGF-1, and IGF-1 R; C6 glioma cell proliferation, apoptosis, and cycle growth arrest; C6 glioma cell growth regression and subcutaneous tumorigenicity rates. RESULTS: All siRNA constructs proved to be effective. After 48 hours, transfection of 200 nmol/L siRNA resulted in a FGF-2 or IGF-1R gene inhibition ratio 〉 80% and an IGF-1 gene inhibition ratio of approximately 70%. Protein expression levels for FGF-2, IGF-1, and IGF-1R decreased in a dose-dependent manner following siRNA transfection, with an inhibition rate 〉 85%, 60%, and 50%, respectively. C6 glioma cell proliferation and apoptosis rates increased in proportion to siRNA. The apoptosis rate of C6 glioma cells induced by FGF-2, IGF-1, and IGF-1R siRNA was 39.96%, 15.07% and 22.47%, respectively (P 〈 0.01). Transfection of 200 nmol/L IGF or IGF-1R siRNA for 48 hours suppressed C6 glioma cell migration. At 30 days after intratumoral injection of 2.6, 4, and 5.3 tJg FGF-2 siRNA, tumor growth regression rate of FGF-2 siRNA was 56%, 67%, and 86%, respectively. The tumor growth regression rate was 71.88% and 45.71%, respectively, when IGF-1 or IGF-1R siRNA was intratumorally injected 1 week after C6 glioma cell transplantation. When IGF-1 or IGF-1 R siRNA was intratumorally injected during C6 glioma cell transplantation, the tumor growth regression rate was 78.13% and 74.29%, respectively. CONCLUSION: siRNA transfection downregulated gene expression of FGF-2, IGF-1, and IGF-1R In addition, siRNA treatment markedly suppressed glioma cell proliferation, growth, and migration, and concomitantly reduced subcutaneous tumorigenicity. 展开更多
关键词 small interference RNA basic fibroblast growth factor-2 insulin-like growth factor 1 insulin-like growth factor 1 receptor C6 glioma cell line
下载PDF
Preparation, Release-control and Cell Apoptosis of C_6 Glioma Cells in PEG-PLGA-Rg3 Nanoparticles
19
作者 BIE Li YUAN Hong-yan +2 位作者 WANG Xin ZHAO Gang LIU Xing-ji 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第5期780-784,共5页
With biodegradable material poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) as substrate, the size distribution of Rg3-NPs was approved by the scanning electron microscopy. MTT assay was used to dete... With biodegradable material poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) as substrate, the size distribution of Rg3-NPs was approved by the scanning electron microscopy. MTT assay was used to detect the effects of Rg3-NPs on the growth rate of C6 cells at various concentrations and flow cytometry(FCM) was applied to assay the cell cycle and cell apoptosis of C6 glioma cells. Western blot analysis was used to measure the protein level of PCNA. The results show that Rg3-NPs are slick and uniformity, the average diameter of the nanoparticles is about 75-90 nm, entrapment efficiency is (89.7±1.7)%. MTT assay shows the growth of C6 Glioma Cells can be significantly inhibited by Rg3-NPs in a dose-dependence manner. FCM and Western blot analysis show Rg3 can be released from the conjugated nanoparticles to function in the cell nuclei so as to lead to the changes in the growth cycle of the cells, which results in the arrest of G0-G1 cell cycle and induces the apoptosis of C6 cells. Therefore, Rg3-NPs may be used for the auxiliary therapy of brain glioma. 展开更多
关键词 Ginsenoside Rg3 Poly(D L-lactide-co-glycolide) Characteristics of physical chemistry C6 glioma cell APOTOSIS
下载PDF
Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen
20
作者 王伟 王茂德 +4 位作者 王拓 姜海涛 张仲林 陈伟 高兴 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第2期220-225,230,共7页
Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 3% fetal calf serum (FCS), and treat... Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2’-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time-and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma. 展开更多
关键词 tamoxifen(TAM) C6 glioma cell APOPTOSIS PROLIFERATION
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部