This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examinati...This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examination, can rapidly remove the irrelevant parts in a scene and find the vertices which fall into the shadow area of a given object. It is an effective alternative to the conventional shadow feeler method.展开更多
In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation al...In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation algorithm is first developed, in which the more inherent concurrency is explored. Then its parallel implementation by using a PVM mechanism and the running performance analysis are provided. The analysis results show the expected speed-up obtained and demonstrate that the PVM has good application prospects for parallel computation in a distributed network.展开更多
In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflec...In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.展开更多
With the rapid development of manufacturing technology, the traditional simulation of machining can not meet the people’s need. Research on virtual machining environment is one of the key parts of virtual manufacturi...With the rapid development of manufacturing technology, the traditional simulation of machining can not meet the people’s need. Research on virtual machining environment is one of the key parts of virtual manufacturing technology. According to the features of virtual turning, this paper proposes a simplified Whitted lighting model based on analysis of Phong and other local illumination model. This model takes the material and roughness of workpiece into account to calculate the roughness coefficient D, geometric fading coefficient G and Fresenel transmission coefficient F’ so that the light intensity in the scene can be got more realisticly. Moreover, to obtain the natural lighting effects, based on the analysis of motion space of machine tools, local ray tracing algorithm is given to calculate the light intensity of every position during the course of simulation. This method can not only simulate the machining environment accurately, but also reduce the calculating time greatly. For example, if CPU is 1.3 G and internal memory is 128 M, the refresh time using the original algorithm is 0.1 second, while it becomes 0.01 seconds by local refreshing. Besides, to get more realistic machining scene, the paper deduce the transfer matrix from chip coordinate to feeding coordinate so that the chip model can be integrated into the whole machining scene. At last, a example of virtual cutting scene is shown to demonstrate the effects of global illumination model and helical chip simulation. The system can give the user high true sensation. The user can operate the machine tools through the controlling panel and watch the cutting process from different viewing angle. The data needed for construction of scene and chip simulation is obtained form the C616 lathe. This study plays important role in richening virtual manufacturing theory and promoting the development of advanced manufacturing technology.展开更多
An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero v...An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.展开更多
We have simulated a time varying wind field using the lattice Boltzmann model, and its effect on blades of grass with a simple mass-spring model. We present a global illumination model for multiple scattering of incid...We have simulated a time varying wind field using the lattice Boltzmann model, and its effect on blades of grass with a simple mass-spring model. We present a global illumination model for multiple scattering of incident sun and sky illumination within the field of grass. We model the grass as a continuous distribution of infinitesimal colored scattering flakes and solve a system of differential equations for the radiance transport. We repeat this for a collection of grass bending directions and amounts, and then interpolate the solutions when rendering animations of blowing grass.展开更多
Based on a virtual spherical light source method, this paper presents an improved virtual spherical lights approach for glossy illumination by modifying a reflection render equation. First, in order to keep primitive ...Based on a virtual spherical light source method, this paper presents an improved virtual spherical lights approach for glossy illumination by modifying a reflection render equation. First, in order to keep primitive spherical lights, it uses non-zero solid angle integration instead of a geometric item of traditional Instant Radiosity arithmetic. Second, the formula mode for the light energy allocation of VSLs is improved by the energy distribution, in which the radius of sphere is replaced by the radius of inscribed circle generated by the tangent to the non-zero solid angle of cone. Third, the similar function of judging two point visibility takes place of a cosine term in the approximate equations of the VSLs. Experiments show that blurring or disappearing phenomenon that appear in part of right-angle surface scene is avoided.展开更多
Photon mapping is widely used for global illumi- nation rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sam- piing required in final gathering, a pr...Photon mapping is widely used for global illumi- nation rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sam- piing required in final gathering, a process that is critical for removing low frequency artifacts of density estimation. In this paper, we propose a method to predict the final gather- ing estimation with direct density estimation, thereby achiev- ing high quality global illumination by photon mapping with high efficiency. We first sample the irradiance of a subset of shading points by both final gathering and direct radiance es- timation. Then we use the samples as a training set to predict the final gathered irradiance of other shading points through regression. Consequently, we are able to achieve about three times overall speedup compared with straightforward final gathering in global illumination computation with the same rendering quality.展开更多
A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partiti...A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partitioning is presented and a fast box traversal algorithm is used. By this technique multiple ray intersections with objects that are in more than one box can be avoided. As a result, the speed of ray tracing is considerably increased.展开更多
According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lightin...According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lighting effects, local ray tra cing algorithm is given to calculate the light intensity of every position durin g the course of the simulation. This method can calculate the refresh area befor e calculating the intersection line, simulate the machining environment accurate ly and reduce the calculating time. Finally, an example of the virtual cutting s cene is shown to demonstrate the effects of the global illumination model. If th e CUP is 1.3 G and the internal memory is 128 M, the refreshing time of virtual turning scene can be reduced by nine times.This study plays an important role in the enrichment of the virtual manufacturing theory and the promotion of the dev elopment of the advanced manufacturing technology.展开更多
Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car exhibitions.These scenarios usually include all-frequency bidirectional reflectance distribution f...Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car exhibitions.These scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs),although their geometries and light configurations may be static.Rendering allfrequency BRDFs in real time remains challenging due to the complex light transport.Existing approaches,including precomputed radiance transfer,light probes,and the most recent path-tracing-based approaches(ReSTIR PT),cannot satisfy both quality and performance requirements simultaneously.Herein,we propose a practical hybrid global illumination approach that combines ray tracing and cached GI by caching the incoming radiance with wavelets.Our approach can produce results close to those of ofline renderers at the cost of only approximately 17 ms at runtime and is robust over all-frequency BRDFs.Our approach is designed for applications involving static lighting and geometries,such as virtual exhibitions.展开更多
This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is ...This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.展开更多
Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding renderi...Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.展开更多
This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these ch...This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these changes, we simulate the lighting transportation process at run time, which is normally impractical for interactive use due to its huge computational burden. We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound. Furthermore, by exploiting the coherence in time as well as in space, we incrementally adjust the clusters rather than computing them from scratch in each frame. With a pre-computed visibility map, we are able to efficiently estimate the indirect illumination in parallel on graphics hardware, by simply summing up the radiance shoots from cluster representatives, plus a small number of operations of merging and splitting on clusters. With relighting based on the time-varying clusters, interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in applications to material animation and scene decoration.展开更多
Photon mapping can simulate some special effects efficiently such as shadows and caustics. Photon mapping runs in two phases: the photon map generating phase and the radiance estimation phase. In this paper, we focus...Photon mapping can simulate some special effects efficiently such as shadows and caustics. Photon mapping runs in two phases: the photon map generating phase and the radiance estimation phase. In this paper, we focus on the bandwidth selection process in the second phase, as it can affect the final quality significantly. Poor results with noise arise if few photons are collected, while bias appears if a large number of photons are collected. In order to solve this issue, we propose an adaptive radiance estimation solution to obtain trade-offs between noise and bias by changing the number of neighboring photons and the shape of the collected area according to the radiance gradient. Our approach can be applied in both the direct and the indirect illumination computation. Finally, experimental results show that our approach can produce smoother quality while keeping the high frequency features perfectly compared with the original photon mapping algorithm.展开更多
In this paper, we study the estimation variance of a set of global illumination algorithms based on indirect light path reuse. These algorithms usually contain two passes -- in the first pass, a small number of indire...In this paper, we study the estimation variance of a set of global illumination algorithms based on indirect light path reuse. These algorithms usually contain two passes -- in the first pass, a small number of indirect light samples are generated and evaluated, and they are then reused by a large number of reconstruction samples in the second pass. Our analysis shows that the covariance of the reconstruction samples dominates the estimation variance under high reconstruction rates and increasing the reconstruction rate cannot effectively reduce the covariance. We also find that the covariance represents to what degree the indirect light samples are reused during reconstruction. This analysis motivates us to design a heuristic approximating the covariance as well as an adaptive sampling scheme based on this heuristic to reduce the rendering variance. We validate our analysis and adaptive sampling scheme in the indirect light field reconstruction algorithm and the axis-aligned filtering algorithm for indirect lighting. Experiments are in accordance with our analysis and show that rendering artifacts can be greatly reduced at a similar computational cost.展开更多
Radiosity has been a popular method for photorealistic image generation.But the determination of form factors between curved patches is the most difficult and time consuming procedure, and also the errors caused by ap...Radiosity has been a popular method for photorealistic image generation.But the determination of form factors between curved patches is the most difficult and time consuming procedure, and also the errors caused by approximating source patch's radiosity with average values are obvious. In this paper,a radiosity algorithm for rendering curved surfaces represented by parameters is described. The contributed radiosity from differential areas on four vertices of the source patch to a receiving point is calculated firstly, then the contribution from the inner area of the source patch is evaluated by interpolating the values on four corners. Both the difficult problem of determining form-factors between curved surfaces and errors mentioned above have been avoided. Comparison of the experimental results using the new algorithm has been made with the ones obtained by traditional method. Some associated techniques such as the visibility test and the adaptive subdivision are also described.展开更多
In an animated scene,geometry and lighting often change in an unpredictable way. Rendering algorithms based on Monte Carlo methods are usually employed to precisely capture all features of an animated scene. However,M...In an animated scene,geometry and lighting often change in an unpredictable way. Rendering algorithms based on Monte Carlo methods are usually employed to precisely capture all features of an animated scene. However,Monte Carlo methods typically take a long time to produce a noise-free image. In this paper,we propose a variance reduction technique for Monte Carlo methods which exploits coherence between frames. Firstly,we introduce a dual cone model to measure the incident coherence intersecting camera rays in object space. Secondly,we allocate multiple frame buffers to store image samples from consecutive frames. Finally,the color of a pixel in one frame is computed by borrowing samples from neighboring pixels in current,previous,and subsequent frames. Our experiments show that noise is greatly reduced by our method since the number of effective samples is increased by use of borrowed samples.展开更多
This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-time glossy indirect illumination using this modification. T...This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-time glossy indirect illumination using this modification. The original filtered importance sampling method produces large overlaps of and gaps between filtering kernels for high-frequency probability density functions(PDFs). This is because the size of the filtering kernel is determined using the PDF at the sampled center of the kernel. To reduce those overlaps and gaps, this paper determines the kernel size using the integral of the PDF within the filtering kernel. Our key insight is that these integrals are approximately constant, if kernel centers are sampled using stratified sampling. Therefore, an appropriate kernel size can be obtained by solving this integral equation. Using the proposed kernel size for filtered importance samplingbased VSGL generation, undesirable artifacts are significantly reduced with a negligibly small overhead.展开更多
文摘This paper presents an efficient hierarchical occlusion test algorithm to support the global illumination solution such as Ray Tracing and Radiosity. This method, which is based on a cone volume intersection examination, can rapidly remove the irrelevant parts in a scene and find the vertices which fall into the shadow area of a given object. It is an effective alternative to the conventional shadow feeler method.
文摘In this paper an attempt of employing network resources to solve a complex and time-consuming problem is presented. The global illumination problem is selected as the study objective. An improved density estimation algorithm is first developed, in which the more inherent concurrency is explored. Then its parallel implementation by using a PVM mechanism and the running performance analysis are provided. The analysis results show the expected speed-up obtained and demonstrate that the PVM has good application prospects for parallel computation in a distributed network.
基金supported by the National Natural Science Foundation of China (No.60875046)by Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1109)+5 种基金the Key Project of Chinese Ministry of Education (No.209029)the Program for Liaoning Excellent Talents in University(No.LR201003)the Program for Liaoning Science and Technology Research in University (No.LS2010008,2009S008,2009S009,LS2010179)the Program for Liaoning Innovative Research Team in University(Nos.2009T005,LT2010005,LT2011018)Natural Science Foundation of Liaoning Province (201102008)by Liaoning BaiQianWan Talents Program(2010921010,2011921009)
文摘In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.
基金Sponsoredbynationalscientificfund (No .5 0 1 75 0 81 )
文摘With the rapid development of manufacturing technology, the traditional simulation of machining can not meet the people’s need. Research on virtual machining environment is one of the key parts of virtual manufacturing technology. According to the features of virtual turning, this paper proposes a simplified Whitted lighting model based on analysis of Phong and other local illumination model. This model takes the material and roughness of workpiece into account to calculate the roughness coefficient D, geometric fading coefficient G and Fresenel transmission coefficient F’ so that the light intensity in the scene can be got more realisticly. Moreover, to obtain the natural lighting effects, based on the analysis of motion space of machine tools, local ray tracing algorithm is given to calculate the light intensity of every position during the course of simulation. This method can not only simulate the machining environment accurately, but also reduce the calculating time greatly. For example, if CPU is 1.3 G and internal memory is 128 M, the refresh time using the original algorithm is 0.1 second, while it becomes 0.01 seconds by local refreshing. Besides, to get more realistic machining scene, the paper deduce the transfer matrix from chip coordinate to feeding coordinate so that the chip model can be integrated into the whole machining scene. At last, a example of virtual cutting scene is shown to demonstrate the effects of global illumination model and helical chip simulation. The system can give the user high true sensation. The user can operate the machine tools through the controlling panel and watch the cutting process from different viewing angle. The data needed for construction of scene and chip simulation is obtained form the C616 lathe. This study plays important role in richening virtual manufacturing theory and promoting the development of advanced manufacturing technology.
文摘An alternative Monte Carlo strategy for the computation of global illumination problem was presented.The proposed approach provided a new and optimal way for solving Monte Carlo global illumination based on the zero variance importance sampling procedure. A new importance driven Monte Carlo global illumination algorithm in the framework of the new computing scheme was developed and implemented. Results, which were obtained by rendering test scenes, show that this new framework and the newly derived algorithm are effective and promising.
基金the Japan Society for the Promotion of Science for financial support.
文摘We have simulated a time varying wind field using the lattice Boltzmann model, and its effect on blades of grass with a simple mass-spring model. We present a global illumination model for multiple scattering of incident sun and sky illumination within the field of grass. We model the grass as a continuous distribution of infinitesimal colored scattering flakes and solve a system of differential equations for the radiance transport. We repeat this for a collection of grass bending directions and amounts, and then interpolate the solutions when rendering animations of blowing grass.
基金Supported by the Program for New Jinzhou District Science and Technology Research(No.2013-GX1-015)the Scientific Research Fund of Liaoning Provincial Education Department(No.L2013459)
文摘Based on a virtual spherical light source method, this paper presents an improved virtual spherical lights approach for glossy illumination by modifying a reflection render equation. First, in order to keep primitive spherical lights, it uses non-zero solid angle integration instead of a geometric item of traditional Instant Radiosity arithmetic. Second, the formula mode for the light energy allocation of VSLs is improved by the energy distribution, in which the radius of sphere is replaced by the radius of inscribed circle generated by the tangent to the non-zero solid angle of cone. Third, the similar function of judging two point visibility takes place of a cosine term in the approximate equations of the VSLs. Experiments show that blurring or disappearing phenomenon that appear in part of right-angle surface scene is avoided.
文摘Photon mapping is widely used for global illumi- nation rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sam- piing required in final gathering, a process that is critical for removing low frequency artifacts of density estimation. In this paper, we propose a method to predict the final gather- ing estimation with direct density estimation, thereby achiev- ing high quality global illumination by photon mapping with high efficiency. We first sample the irradiance of a subset of shading points by both final gathering and direct radiance es- timation. Then we use the samples as a training set to predict the final gathered irradiance of other shading points through regression. Consequently, we are able to achieve about three times overall speedup compared with straightforward final gathering in global illumination computation with the same rendering quality.
文摘A fast algorithm for ray tracing is presented, with which the specular reflection term of global illumination model is improved. A hybrid technique combining hierarchical bounding volumes and constant size box partitioning is presented and a fast box traversal algorithm is used. By this technique multiple ray intersections with objects that are in more than one box can be avoided. As a result, the speed of ray tracing is considerably increased.
文摘According to the features of the turning simulation, a simplified Whitted lighti ng model is proposed based on the analysis of Phong and other local illumination model. Moreover, in order to obtain the natural lighting effects, local ray tra cing algorithm is given to calculate the light intensity of every position durin g the course of the simulation. This method can calculate the refresh area befor e calculating the intersection line, simulate the machining environment accurate ly and reduce the calculating time. Finally, an example of the virtual cutting s cene is shown to demonstrate the effects of the global illumination model. If th e CUP is 1.3 G and the internal memory is 128 M, the refreshing time of virtual turning scene can be reduced by nine times.This study plays an important role in the enrichment of the virtual manufacturing theory and the promotion of the dev elopment of the advanced manufacturing technology.
基金supported by the National Key R&D Program of China under Grant No.2020YFB1709203the National Natural Science Foundation of China under Grant Nos.62272275 and 62172220the Shandong Provincial Natural Science Foundation of China under Grant No.ZR2020LZH016.
文摘Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car exhibitions.These scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs),although their geometries and light configurations may be static.Rendering allfrequency BRDFs in real time remains challenging due to the complex light transport.Existing approaches,including precomputed radiance transfer,light probes,and the most recent path-tracing-based approaches(ReSTIR PT),cannot satisfy both quality and performance requirements simultaneously.Herein,we propose a practical hybrid global illumination approach that combines ray tracing and cached GI by caching the incoming radiance with wavelets.Our approach can produce results close to those of ofline renderers at the cost of only approximately 17 ms at runtime and is robust over all-frequency BRDFs.Our approach is designed for applications involving static lighting and geometries,such as virtual exhibitions.
基金supported by the Lavoisier Grant from French Ministry of Foreign Affairs.Xavier Granier is supported by the Open Project Program of the State Key Lab of CAD&CG,Zhejiang University under Grant No.A1007.
文摘This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination.This structure is intended for efficient storage and manipulation of illumination.It is based on a 3D grid that stores a fixed set of irradiance vectors.During preprocessing,this representation can be built using almost any existing global illumination software.During rendering,the indirect illumination within a voxel is interpolated from its associated irradiance vectors,and is used as additional local light sources.Compared with other techniques,the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene.We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.
基金Project supported by the National Natural Science Foundation of China(Nos.61472224 and 61472225)the Young Scholars Program of Shandong University,China(No.2015WLJH41)+2 种基金the Shandong Key Research and Development Program,China(No.2015GGX106006)the Special Funding of Independent Innovation and Transformation of Achievements in Shandong Province of China(No.2014ZZCX08201)the Special Funds of Taishan Scholar Construction Project,China
文摘Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.
基金Supported by the National Basic Research Program of China (Grant No. 2009CB320802)the National Natural Science Foundation of China(Grant No. 60833007)+1 种基金the National High-Tech Research & Development Progran of China (Grant No. 2008AA01Z301)the ResearchGrant of the University of Macao
文摘This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these changes, we simulate the lighting transportation process at run time, which is normally impractical for interactive use due to its huge computational burden. We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound. Furthermore, by exploiting the coherence in time as well as in space, we incrementally adjust the clusters rather than computing them from scratch in each frame. With a pre-computed visibility map, we are able to efficiently estimate the indirect illumination in parallel on graphics hardware, by simply summing up the radiance shoots from cluster representatives, plus a small number of operations of merging and splitting on clusters. With relighting based on the time-varying clusters, interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in applications to material animation and scene decoration.
基金This work was partly supported by the National Natural Science Foundation of China under Grant Nos. 61472224 and 61472225, the National High Technology Research and Development 863 Program of China under Grant No. 2012AAOIA306, the Special Funding of Independent Innovation and Transformation of Achievements in Shandong Province of China under Grant No. 2014ZZCX08201, Shandong Key Research and Development Program under Grant No, 2015GGX106006, Young Scholars Program of Shandong University under Grant No. 2015WLJH41, and the Special Funds of Taishan Scholar Construction Project.
文摘Photon mapping can simulate some special effects efficiently such as shadows and caustics. Photon mapping runs in two phases: the photon map generating phase and the radiance estimation phase. In this paper, we focus on the bandwidth selection process in the second phase, as it can affect the final quality significantly. Poor results with noise arise if few photons are collected, while bias appears if a large number of photons are collected. In order to solve this issue, we propose an adaptive radiance estimation solution to obtain trade-offs between noise and bias by changing the number of neighboring photons and the shape of the collected area according to the radiance gradient. Our approach can be applied in both the direct and the indirect illumination computation. Finally, experimental results show that our approach can produce smoother quality while keeping the high frequency features perfectly compared with the original photon mapping algorithm.
基金This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61472352, 61379070, and 61272305, and the National High Technology Research and Development 863 Program of China under Grant No. 2012AA010903.
文摘In this paper, we study the estimation variance of a set of global illumination algorithms based on indirect light path reuse. These algorithms usually contain two passes -- in the first pass, a small number of indirect light samples are generated and evaluated, and they are then reused by a large number of reconstruction samples in the second pass. Our analysis shows that the covariance of the reconstruction samples dominates the estimation variance under high reconstruction rates and increasing the reconstruction rate cannot effectively reduce the covariance. We also find that the covariance represents to what degree the indirect light samples are reused during reconstruction. This analysis motivates us to design a heuristic approximating the covariance as well as an adaptive sampling scheme based on this heuristic to reduce the rendering variance. We validate our analysis and adaptive sampling scheme in the indirect light field reconstruction algorithm and the axis-aligned filtering algorithm for indirect lighting. Experiments are in accordance with our analysis and show that rendering artifacts can be greatly reduced at a similar computational cost.
文摘Radiosity has been a popular method for photorealistic image generation.But the determination of form factors between curved patches is the most difficult and time consuming procedure, and also the errors caused by approximating source patch's radiosity with average values are obvious. In this paper,a radiosity algorithm for rendering curved surfaces represented by parameters is described. The contributed radiosity from differential areas on four vertices of the source patch to a receiving point is calculated firstly, then the contribution from the inner area of the source patch is evaluated by interpolating the values on four corners. Both the difficult problem of determining form-factors between curved surfaces and errors mentioned above have been avoided. Comparison of the experimental results using the new algorithm has been made with the ones obtained by traditional method. Some associated techniques such as the visibility test and the adaptive subdivision are also described.
文摘In an animated scene,geometry and lighting often change in an unpredictable way. Rendering algorithms based on Monte Carlo methods are usually employed to precisely capture all features of an animated scene. However,Monte Carlo methods typically take a long time to produce a noise-free image. In this paper,we propose a variance reduction technique for Monte Carlo methods which exploits coherence between frames. Firstly,we introduce a dual cone model to measure the incident coherence intersecting camera rays in object space. Secondly,we allocate multiple frame buffers to store image samples from consecutive frames. Finally,the color of a pixel in one frame is computed by borrowing samples from neighboring pixels in current,previous,and subsequent frames. Our experiments show that noise is greatly reduced by our method since the number of effective samples is increased by use of borrowed samples.
文摘This paper proposes a modification of the filtered importance sampling method, and improves the quality of virtual spherical Gaussian light(VSGL)-based real-time glossy indirect illumination using this modification. The original filtered importance sampling method produces large overlaps of and gaps between filtering kernels for high-frequency probability density functions(PDFs). This is because the size of the filtering kernel is determined using the PDF at the sampled center of the kernel. To reduce those overlaps and gaps, this paper determines the kernel size using the integral of the PDF within the filtering kernel. Our key insight is that these integrals are approximately constant, if kernel centers are sampled using stratified sampling. Therefore, an appropriate kernel size can be obtained by solving this integral equation. Using the proposed kernel size for filtered importance samplingbased VSGL generation, undesirable artifacts are significantly reduced with a negligibly small overhead.