A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gr...A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.展开更多
A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assum...A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.展开更多
Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti...Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.展开更多
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene...An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.展开更多
The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, ...The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, in the error analysis theory of present-day computational mathematics, the non-linear process between truncation error and rounding error is treated as a linear operation. In this paper, based on the operator equations of large-scale atmospheric movement, the above limitation is overcome by using the notion of cell mapping. Through studying the global asymptotic characteristics of the numerical pattern of the large-scale atmospheric equations, the definitions of the global convergence and an appropriate discrete algorithm of the numerical pattern are put forward. Three determinant theorems about the global convergence of the numerical pattern are presented, which provide the theoretical basis for constructing the globally convergent numerical pattern. Further, it is pointed out that only a globally convergent numerical pattern can improve the veracity of climatic prediction.展开更多
We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combinati...We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del...Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new de...Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.展开更多
A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided proje...A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.展开更多
This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are glob...This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.展开更多
In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other t...In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other than the quadratic programming, which decrease the amount of computations and is also efficient for large scale problem. Under some mild assumptions without the strict complementary condition., the method is globally and superlinearly convergent.展开更多
For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorit...For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstra...A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
Projection type neural network for optimization problems has advantages over other networks for fewer parameters , low searching space dimension and simple structure. In this paper, by properly constructing a Lyapunov...Projection type neural network for optimization problems has advantages over other networks for fewer parameters , low searching space dimension and simple structure. In this paper, by properly constructing a Lyapunov energy function, we have proven the global convergence of this network when being used to optimize a continuously differentiable convex function defined on a closed convex set. The result settles the extensive applicability of the network. Several numerical examples are given to verify the efficiency of the network.展开更多
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio...Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.展开更多
基金supported by the Guangxi Science and Technology base and Talent Project(AD22080047)the National Natural Science Foundation of Guangxi Province(2023GXNFSBA 026063)+1 种基金the Innovation Funds of Chinese University(2021BCF03001)the special foundation for Guangxi Ba Gui Scholars.
文摘A cautious projection BFGS method is proposed for solving nonconvex unconstrained optimization problems.The global convergence of this method as well as a stronger general convergence result can be proven without a gradient Lipschitz continuity assumption,which is more in line with the actual problems than the existing modified BFGS methods and the traditional BFGS method.Under some additional conditions,the method presented has a superlinear convergence rate,which can be regarded as an extension and supplement of BFGS-type methods with the projection technique.Finally,the effectiveness and application prospects of the proposed method are verified by numerical experiments.
基金Supported by the National Natural Science Foundation of P.R.China(1 9971 0 0 2 ) and the Subject ofBeijing Educational Committ
文摘A new trust region algorithm for solving convex LC 1 optimization problem is presented.It is proved that the algorithm is globally convergent and the rate of convergence is superlinear under some reasonable assumptions.
文摘Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA.
文摘An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.
文摘The computational uncertainty principle in nonlinear ordinary differential equations makes the numerical solution of the long-term behavior of nonlinear atmospheric equations have no meaning. The main reason is that, in the error analysis theory of present-day computational mathematics, the non-linear process between truncation error and rounding error is treated as a linear operation. In this paper, based on the operator equations of large-scale atmospheric movement, the above limitation is overcome by using the notion of cell mapping. Through studying the global asymptotic characteristics of the numerical pattern of the large-scale atmospheric equations, the definitions of the global convergence and an appropriate discrete algorithm of the numerical pattern are put forward. Three determinant theorems about the global convergence of the numerical pattern are presented, which provide the theoretical basis for constructing the globally convergent numerical pattern. Further, it is pointed out that only a globally convergent numerical pattern can improve the veracity of climatic prediction.
文摘We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent, Our stabilizer consists of a nested saturation function, which is a nonlinear combination of saturation functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above,
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
文摘Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金Supported by The Youth Project Foundation of Chongqing Three Gorges University(13QN17)Supported by the Fund of Scientific Research in Southeast University(the Support Project of Fundamental Research)
文摘Y Liu and C Storey(1992)proposed the famous LS conjugate gradient method which has good numerical results.However,the LS method has very weak convergence under the Wolfe-type line search.In this paper,we give a new descent gradient method based on the LS method.It can guarantee the sufficient descent property at each iteration and the global convergence under the strong Wolfe line search.Finally,we also present extensive preliminary numerical experiments to show the efficiency of the proposed method by comparing with the famous PRP^+method.
文摘A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.
文摘This paper explores the convergence of a class of optimally conditioned self scaling variable metric (OCSSVM) methods for unconstrained optimization. We show that this class of methods with Wolfe line search are globally convergent for general convex functions.
文摘In this paper, a new mixed quasi-Newton method for inequality constrained optimization problems is proposed. The feature of the method is that only the systems of linear equations are solved in each iteration, other than the quadratic programming, which decrease the amount of computations and is also efficient for large scale problem. Under some mild assumptions without the strict complementary condition., the method is globally and superlinearly convergent.
基金supported by the National Natural Science Foundation of China(No.60874063)the Innovation Scientific Research Foundation for Graduate Students of Heilongjiang Province(No.YJSCX2008-018HLJ),and the Automatic Control Key Laboratory of Heilongjiang University
文摘For multisensor systems,when the model parameters and the noise variances are unknown,the consistent fused estimators of the model parameters and noise variances are obtained,based on the system identification algorithm,correlation method and least squares fusion criterion.Substituting these consistent estimators into the optimal weighted measurement fusion Kalman filter,a self-tuning weighted measurement fusion Kalman filter is presented.Using the dynamic error system analysis (DESA) method,the convergence of the self-tuning weighted measurement fusion Kalman filter is proved,i.e.,the self-tuning Kalman filter converges to the corresponding optimal Kalman filter in a realization.Therefore,the self-tuning weighted measurement fusion Kalman filter has asymptotic global optimality.One simulation example for a 4-sensor target tracking system verifies its effectiveness.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
文摘A trust-region algorithm is presented for a nonlinear optimization problem of equality-constraints. The characterization of the algorithm is using inexact gradient information. Global convergence results are demonstrated where the gradient values are obeyed a simple relative error condition.
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金This work was supported by the National Natural Science Foundation of China (No. 60473034).
文摘Projection type neural network for optimization problems has advantages over other networks for fewer parameters , low searching space dimension and simple structure. In this paper, by properly constructing a Lyapunov energy function, we have proven the global convergence of this network when being used to optimize a continuously differentiable convex function defined on a closed convex set. The result settles the extensive applicability of the network. Several numerical examples are given to verify the efficiency of the network.
文摘Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.