The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of ...The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.展开更多
By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in...By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in the reference [ 10] got by the second author herself.展开更多
The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic sta...The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic stability of a positive steady-state solution to the model problem by using coupled upper and lower solutions for a more general reaction-diffusion system that gives a common framework for 3-species cooperating model problems. The result of global asymptotic stability implies that the model system coexistence is permanent. Some global asymptotic stability results for 2-species cooperating reaction-diffusion systems are included in the discussion, and some known results are extended.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
The stability of a kind of cooperative models incorporating harvesting is considered in this paper. By analyzing the characteristic roots of the models and constructing suitable Lyapunov functions, we prove that nonne...The stability of a kind of cooperative models incorporating harvesting is considered in this paper. By analyzing the characteristic roots of the models and constructing suitable Lyapunov functions, we prove that nonnegative equilibrium points of the models are globally asymptotically stable. Further, the corresponding nonautonomous cooperative models have a unique asymptotically periodic solution, which is uniformly asymptotically stable. An example is given to illustrate the effectiveness of our results.展开更多
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode...Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).展开更多
In this paper<i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> fuzzy techniques have been used to track the problem of malaria tran...In this paper<i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> fuzzy techniques have been used to track the problem of malaria transmission dynamics. The fuzzy equilibrium of the proposed model was discussed for different amounts of parasites in the body. We proved that when the amounts of parasites are less than the minimum amounts required for disease transmission (<img src="Edit_bced8210-1c24-4e78-bb5b-60ea7d37361c.png" alt="" /></span><span></span><span style="font-family:Verdana;">)</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> we reach the model disease-free equilibrium. Using Choquet integral</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> the fuzzy basic reproduction number through the expected value of fuzzy variable was introduced for the fuzzy Susceptible</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Exposed</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Infected</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Recovered</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> susceptible-Susceptible</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Exposed and Infected (SEIRS-SEI) malaria model. The fuzzy global stabilities were introduced and discussed. The disease-free equilibrium <img src="Edit_cc2d122d-7c04-4fb7-a96a-3eb919a3785d.png" alt="" /> </span><span style="font-family:Verdana;">is globally asymptotically stable if <img src="Edit_0974e52f-cf63-4bfa-9781-1ebce366a4a3.png" alt="" /></span><span></span><span style="font-family:Verdana;"> or if the basic reproduction number is less than one (<img src="Edit_dbffcb03-cd00-4213-b7e1-ada9a0cf5c98.png" alt="" /></span><span></span><span style="font-family:Verdana;">). When <img src="Edit_5fc38f3d-2561-4189-87c2-197e3ff30b2e.png" alt="" /></span><span></span><span style="font-family:Verdana;"> and <img src="Edit_bfe99d90-7e55-4466-96b2-ce107483f69b.png" alt="" /></span><span></span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> there exists a co-existing endemic equilibrium which is globally asymptotically stable in the interior of feasible set <img src="Edit_543608fd-d8c9-4109-a285-bcf9377f43cc.png" alt="" /></span><span></span><span style="font-family:Verdana;">. Finally</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> the numerical simulation has been done for showing the effectiveness of our analytical results.</span>展开更多
The L2 exponetial asymptotical stability for the equilibrium solution of the F-M equations in the space-periodic case (n=2) is considered. Under some assumptions on the external force, it can be shown that the weak so...The L2 exponetial asymptotical stability for the equilibrium solution of the F-M equations in the space-periodic case (n=2) is considered. Under some assumptions on the external force, it can be shown that the weak solution of F-M equations with initial and boundary conditions in space-periodic case approaches the stationary solution of the system exponetially when time t goes to infinite.展开更多
Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two o...Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.展开更多
A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the origina...A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.展开更多
In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz p...In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz property of the functions. Based on this tool of nonsmooth analysis, we first obtain a couple of general results concerning the existence and uniqueness of the equilibrium point. Then we drive some new sufficient conditions ensuring global asymptotic stability of the equilibrium point. Finally, there are the illustrative examples feasibility and effectiveness of our results. Throughout our paper, the activation function is a more general function which has a wide application.展开更多
The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient co...The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.展开更多
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr...In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).展开更多
This paper discussed the stability of model of an age structured population systems,proved that the equilibrium solution systems is globally asymptotically stable.
The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature...The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch in...In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].展开更多
In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent lit...In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.展开更多
文摘The three species Lotka-Volterra periodic model with two predators and one prey is considered.A set of easily verifiable sufficient conditions is obtained.Finallyt an example is given to illustrate the feasibility of these conditions.
基金Supported by the Natural Science Foundation of Guangdong Province(011471)Supported by the Education Bureau(0120)
文摘By using a criterion for asymptotic stability in Banach space BC, a group of sufficient condi-tioas for a dynamical model with infinite delay which is derived from hematology were obtained, which refined the result in the reference [ 10] got by the second author herself.
基金the Academic Mainstay Cultivate Foundation of Sichuan Province under the grant No.1200311.
文摘The asymptotic behavior of the time-dependent solution for a 3-species cooperating model was investigated with the effects of both diffusion and time delay taken into consideration. We proved the global asymptotic stability of a positive steady-state solution to the model problem by using coupled upper and lower solutions for a more general reaction-diffusion system that gives a common framework for 3-species cooperating model problems. The result of global asymptotic stability implies that the model system coexistence is permanent. Some global asymptotic stability results for 2-species cooperating reaction-diffusion systems are included in the discussion, and some known results are extended.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
文摘The stability of a kind of cooperative models incorporating harvesting is considered in this paper. By analyzing the characteristic roots of the models and constructing suitable Lyapunov functions, we prove that nonnegative equilibrium points of the models are globally asymptotically stable. Further, the corresponding nonautonomous cooperative models have a unique asymptotically periodic solution, which is uniformly asymptotically stable. An example is given to illustrate the effectiveness of our results.
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
文摘In this paper<i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> fuzzy techniques have been used to track the problem of malaria transmission dynamics. The fuzzy equilibrium of the proposed model was discussed for different amounts of parasites in the body. We proved that when the amounts of parasites are less than the minimum amounts required for disease transmission (<img src="Edit_bced8210-1c24-4e78-bb5b-60ea7d37361c.png" alt="" /></span><span></span><span style="font-family:Verdana;">)</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> we reach the model disease-free equilibrium. Using Choquet integral</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> the fuzzy basic reproduction number through the expected value of fuzzy variable was introduced for the fuzzy Susceptible</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Exposed</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Infected</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Recovered</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> susceptible-Susceptible</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> Exposed and Infected (SEIRS-SEI) malaria model. The fuzzy global stabilities were introduced and discussed. The disease-free equilibrium <img src="Edit_cc2d122d-7c04-4fb7-a96a-3eb919a3785d.png" alt="" /> </span><span style="font-family:Verdana;">is globally asymptotically stable if <img src="Edit_0974e52f-cf63-4bfa-9781-1ebce366a4a3.png" alt="" /></span><span></span><span style="font-family:Verdana;"> or if the basic reproduction number is less than one (<img src="Edit_dbffcb03-cd00-4213-b7e1-ada9a0cf5c98.png" alt="" /></span><span></span><span style="font-family:Verdana;">). When <img src="Edit_5fc38f3d-2561-4189-87c2-197e3ff30b2e.png" alt="" /></span><span></span><span style="font-family:Verdana;"> and <img src="Edit_bfe99d90-7e55-4466-96b2-ce107483f69b.png" alt="" /></span><span></span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> there exists a co-existing endemic equilibrium which is globally asymptotically stable in the interior of feasible set <img src="Edit_543608fd-d8c9-4109-a285-bcf9377f43cc.png" alt="" /></span><span></span><span style="font-family:Verdana;">. Finally</span><i><span style="font-family:Verdana;">,</span></i><span style="font-family:Verdana;"> the numerical simulation has been done for showing the effectiveness of our analytical results.</span>
基金the fund of the Yunnan Education Committe the Applied Basic Research Foundation of Yunnan Province
文摘The L2 exponetial asymptotical stability for the equilibrium solution of the F-M equations in the space-periodic case (n=2) is considered. Under some assumptions on the external force, it can be shown that the weak solution of F-M equations with initial and boundary conditions in space-periodic case approaches the stationary solution of the system exponetially when time t goes to infinite.
文摘Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.
基金Foundation of Shanghai for Outstanding Young Teachers in University,China(No.B-5300-08-007)the 085 Knowledge Innovation Project of Shanghai Municipal Education Commission,China(No.Z08509008-01)Humanities and SocialScience Fund General Project of Ministry of Education,China(No.08JA630051)
文摘A detailed analysis was carried out on global asymptotic behavior of a kind of stochastic SIRS(susceptible-infective-removed-susceptible)model.This model has been obtained by introducing stochasticity into the original deterministic SIRS model via the technique of parameter perturbation which is standard in stochastic population modeling.By making corresponding Lyapunov function and using It formula,the condition for the solution of the model tending to the disease free equilibrium asymptotically was obtained.Under this condition,the epidemics will die out as time goes by.Based on this,almost surely exponential stability was analyzed.
文摘In the paper, we obtain new sufficient conditions ensuring existence, uniqueness, and asymptotic stability of the equilibrium point for delayed neural network via nonsmooth analysis, which makes use of the Lipschitz property of the functions. Based on this tool of nonsmooth analysis, we first obtain a couple of general results concerning the existence and uniqueness of the equilibrium point. Then we drive some new sufficient conditions ensuring global asymptotic stability of the equilibrium point. Finally, there are the illustrative examples feasibility and effectiveness of our results. Throughout our paper, the activation function is a more general function which has a wide application.
基金Supported by Natural Science Foundaton of Henan Providence(0111051200)
文摘The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.
文摘In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).
文摘This paper discussed the stability of model of an age structured population systems,proved that the equilibrium solution systems is globally asymptotically stable.
文摘The sex ratio of crocodiles is strongly biased towards females, often as high as 10 females to 1 male. In crocodilians, the temperature of egg incubation is the environmental factor determining sex. If the temperature is low, around 30˚C, the hatchlings are all females. Higher temperature, around 34˚C, hatch all males. This study was made to consider the asymptotic stability of a positive equilibrium point in a nonlinear discrete model of the basic nesting population model, which is described in three-region depending on the temperature of egg incubation. This model is based on key life-historical data and Murray’s research. To study above, we have applied the classical linearization method and P. Cull’s method and moreover, we employ non-standard discretization methods for later our Equations (6)-(8) and (15).
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
基金supported by Japan Society for the Promotion of Science (Grant Scientific Research (c), No. 24540219 to the first author, JSPS Fellows, No.237213 to the second author, and No. 222176 to the third author)
文摘In this article, we establish the global stability of an endemic equilibrium of multi-group SIR epidemic models, which have not only an exchange of individuals between patches through migration but also cross patch infection between different groups. As a result, we partially generalize the recent result in the article [16].
基金supported by Scientific Research(c),No.24540219 of Japan Society for the Promotion of Sciencesupported by Grant-in-Aid for Research Activity Start-up,No.25887011 of Japan Society for the Promotion of Science
文摘In this paper, we establish new sufficient conditions for the infected equilibrium of a nonresident computer virus model to be globally asymptotically stable. Our results extend two kind of known results in recent literature.