With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain subst...With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain substance or a certain independent natural historical body but also a spheric layer with peculiarstructure and functions in the earth system. From the viewpoint of the geo-biosphere system of earth, soilscience does deal not only with the soil substances per se but also more importantly with the relationshipsamong soil, the other spheres and the human survival environment in view of the "pedosphere". This is thenew orientation of soil science today and will affect profoundly the studies on the human survival environmentand global changes. To throw more light on this subject, the present paper intends to address the conceptionof pedosphere and its role in global changes. Also addressed are series of environmental issues in China andtheir relations to the global changes. Moreover, research orientation and priorities are indicated, includingexploitation and protection of the soil resources, soil fertility and sustainable agricultural development, construction of the ecological environment, and the material cycling in pedosphere and its relation to globalchanges.展开更多
High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ...High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ecosystems and habitats for polar organisms.展开更多
Dear Colleagues, We would like to invite you to submit manuscripts to a special issue of the journal Advances in Polar Science (APS) on "Response of Polar Organisms and Natural Environment to Global Changes".
A review of the year’s international political and security situation In 2010, despite the generally stable international environment, significant changes occurred seen in international relations. This is due
The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studi...The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.展开更多
Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaxim...Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaximum (18,000 a BP) when Antarctic sea level was 100- 150 m lower thanthat at presat. Three times of glacial advances and rotreas occurred on thefront of Antarctic Ice Shed since 3,000 a BP. All these phenomena werecoordinated with global changes. In the past decades, records from Antercticice-free areas and ice cores testified that mvironmedl and climatic changesin Antarctic region have been coordinated with global changes since latePlelstocene. In the past decades, Antarctic inland was a little warming up andthe fron of the ice shed was slowly melting and ratreating due to the increaseof CO2 content in the atmosphere. The greenhouse effect will cause AntercticIce Sheet (especially on the ice shelves) to be partly melting away, but can notdestroy it. In this case the amplitude of sea level rise caused by the melting ofAntarctic ice will be less than 0.2 m within the coming five decades.展开更多
Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios...Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios in a typical temperate mixed forest in north-eastern China.Simulated scenarios included warming(T),elevated atmospheric CO_(2) concentration([CO_(2)])(C),increased N deposition(N)and precipitation(P),and their full factorial combinations.The responses of plant-soil nitrogen cycling processes including net N mineralization,plant N uptake,gross nitrification,denitrification and soil N_(2)O emission were examined.Concurrent increase of elevated[CO_(2)]and N deposition displayed most strong interactive effects on most fluxes.Using the results from experimental studies for evaluation,simulation uncertainty was highest under elevated[CO_(2)]and increased precipitation among the four global change factors.N deposition had a fundamental impact on soil N cycle and N_(2)O emission in our studied forest.Despite forest soil acting as a N sink for added N,scenarios which included increased N deposition showed higher cumulative soil N_(2)O emissions(summed up from 2001 to 2100).In particular,the scenario which included T,P,and N had the largest cumulative soil N_(2)O emission,which was a 24.4% increase over that under ambient conditions.Our study points to the importance of the interactive effects of global change factors on plant-soil N cycling and the necessity of multi-factor manipulation experiments.展开更多
<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with u...<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with updrafts, global climate models assuming different parametrizations and lightning-related output variables, and lightning-related data (thunderstorm days) are being used to infer the lightning incidence in a warmer planet, motivated by the global warming observed. In all cases, there are many gaps to be overcome making the lightning response to the global temperature increase still unpredicted. Values from almost 0% (no increase) to 100% have been estimated, being 10% the most common value. While the physical concepts address only part of the problem and the global climate models need to make many simple assumptions, lightning-relate data have strong time and space limitations. In this context, any new evidence should be considered as an important contribution to better understand how will be the lightning incidence in the future. In this article</span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> we described new results about the occurrence of thunderstorms from 1850 to 2010 (a period of 160 years) in the city of Rio de Janeiro, in the Southeast of Brazil. During this period thunderstorm days were recorded in the same location, making this time series one of the longest series of this type available worldwide. The data support an increase of 21% in the mean annual thunderstorm days during the period, while surface temperature i</span><span><span style="font-family:Verdana;">ncreased by 0.6</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C during the period. Considering that the mean annua</span></span><span style="font-family:Verdana;">l number of thunderstorm in the beginning of this period was 29, we found an increase of one thunderstorm day per 0.1</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C of increase in the surface temperature. Assuming that the number of lightning flashes per thunderstorm remains approximately constant during the period</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> this number corresponds to an increase in the lightning flash rate of approximately 35% per </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">C of increase of temperature. In addition, considering that the increase of the global temperature during the period was almost the same that observed in Rio de Janeiro</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we can conclude that this increase in the lightning flash rate is due to the global warming with no effect of urban activity. Finally, we found that monthly thunderstorm days and monthly mean surface temperature show a linear correlation with a coefficient of 0.9 along the period.</span></span></span> </p>展开更多
One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local hu...One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local humidity across Bond events (BE) in the PreboreaL During BEs 8 and 7, 1.5%o enrichments in jlSo values were generally consistent with high- to low-latitude climate changes. In detail, the decadal-scale minor j180 oscillations in BE8 were broadly less than the mean value, in contrast to the significant changes in local soil moisture derived from the j13C values and layer records. In the mid-BE7, jlSo variability was generally above the average level, and higher- amplitude variations were observed in the three proxy indicators. Wavelet analysis on the total jlSo time series and across the specific time windows of BEs 8 and 7 identified periodicities of about 130, 60, and 20-a, respectively. Exceptionally strong in BE7, the 60-a cycle, pervasively observed in instrumental studies, became prominent starting at 11.4 kaBP. Thus, glacial background conditions are important for suppressing the ASM intensity in BE8, while during BE7, tropical hydrological circulations were potentially actively involved. Consequently, climate internal oscillations, analogous to modern conditions, might have occurred in the distant past once the link between the tropical ocean and atmosphere was established as occurs today.展开更多
Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north...Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.展开更多
To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequ...To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.展开更多
China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though t...China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.展开更多
Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted ave...Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.展开更多
Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show ...Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.展开更多
Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change unde...Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.展开更多
Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s...Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.展开更多
Earth is always changing. Knowledge about where changes happened is the first step for us to understand how these changes affect our lives. In this paper, we use a long-term leaf area index data (LAI) to identify wh...Earth is always changing. Knowledge about where changes happened is the first step for us to understand how these changes affect our lives. In this paper, we use a long-term leaf area index data (LAI) to identify where changes happened and where has experienced the strongest change around the globe during 1981-2006. Results show that, over the past 26 years, LAI has generally increased at a rate of 0.0013 per year around the globe. The strongest increasing trend is around 0.0032 per year in the middle and northern high latitudes (north of 30°N). LAI has prominently increased in Europe, Siberia, Indian Peninsula, America and south Canada, South region of Sahara, southwest corner of Australia and Kgalagadi Basin; while noticeably decreased in Southeast Asia, southeastern China, central Africa, central and southern South America and arctic areas in North America.展开更多
High-precision isotope composition determinations using multicollector, magnetic-sector induc- tively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as thos...High-precision isotope composition determinations using multicollector, magnetic-sector induc- tively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research. The Mo isotope system may be useful in paleoredox investigations indicating that δ97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded inδ97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ97/95Mo values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.展开更多
Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently th...Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China.展开更多
Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in bo...Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.展开更多
文摘With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain substance or a certain independent natural historical body but also a spheric layer with peculiarstructure and functions in the earth system. From the viewpoint of the geo-biosphere system of earth, soilscience does deal not only with the soil substances per se but also more importantly with the relationshipsamong soil, the other spheres and the human survival environment in view of the "pedosphere". This is thenew orientation of soil science today and will affect profoundly the studies on the human survival environmentand global changes. To throw more light on this subject, the present paper intends to address the conceptionof pedosphere and its role in global changes. Also addressed are series of environmental issues in China andtheir relations to the global changes. Moreover, research orientation and priorities are indicated, includingexploitation and protection of the soil resources, soil fertility and sustainable agricultural development, construction of the ecological environment, and the material cycling in pedosphere and its relation to globalchanges.
文摘High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ecosystems and habitats for polar organisms.
文摘Dear Colleagues, We would like to invite you to submit manuscripts to a special issue of the journal Advances in Polar Science (APS) on "Response of Polar Organisms and Natural Environment to Global Changes".
文摘A review of the year’s international political and security situation In 2010, despite the generally stable international environment, significant changes occurred seen in international relations. This is due
文摘The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.
文摘Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaximum (18,000 a BP) when Antarctic sea level was 100- 150 m lower thanthat at presat. Three times of glacial advances and rotreas occurred on thefront of Antarctic Ice Shed since 3,000 a BP. All these phenomena werecoordinated with global changes. In the past decades, records from Antercticice-free areas and ice cores testified that mvironmedl and climatic changesin Antarctic region have been coordinated with global changes since latePlelstocene. In the past decades, Antarctic inland was a little warming up andthe fron of the ice shed was slowly melting and ratreating due to the increaseof CO2 content in the atmosphere. The greenhouse effect will cause AntercticIce Sheet (especially on the ice shelves) to be partly melting away, but can notdestroy it. In this case the amplitude of sea level rise caused by the melting ofAntarctic ice will be less than 0.2 m within the coming five decades.
基金supported by the National Basic Research Program of China(973 program,2014CB954400)the National Natural Science Foundation of China(41401289).
文摘Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios in a typical temperate mixed forest in north-eastern China.Simulated scenarios included warming(T),elevated atmospheric CO_(2) concentration([CO_(2)])(C),increased N deposition(N)and precipitation(P),and their full factorial combinations.The responses of plant-soil nitrogen cycling processes including net N mineralization,plant N uptake,gross nitrification,denitrification and soil N_(2)O emission were examined.Concurrent increase of elevated[CO_(2)]and N deposition displayed most strong interactive effects on most fluxes.Using the results from experimental studies for evaluation,simulation uncertainty was highest under elevated[CO_(2)]and increased precipitation among the four global change factors.N deposition had a fundamental impact on soil N cycle and N_(2)O emission in our studied forest.Despite forest soil acting as a N sink for added N,scenarios which included increased N deposition showed higher cumulative soil N_(2)O emissions(summed up from 2001 to 2100).In particular,the scenario which included T,P,and N had the largest cumulative soil N_(2)O emission,which was a 24.4% increase over that under ambient conditions.Our study points to the importance of the interactive effects of global change factors on plant-soil N cycling and the necessity of multi-factor manipulation experiments.
文摘<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with updrafts, global climate models assuming different parametrizations and lightning-related output variables, and lightning-related data (thunderstorm days) are being used to infer the lightning incidence in a warmer planet, motivated by the global warming observed. In all cases, there are many gaps to be overcome making the lightning response to the global temperature increase still unpredicted. Values from almost 0% (no increase) to 100% have been estimated, being 10% the most common value. While the physical concepts address only part of the problem and the global climate models need to make many simple assumptions, lightning-relate data have strong time and space limitations. In this context, any new evidence should be considered as an important contribution to better understand how will be the lightning incidence in the future. In this article</span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> we described new results about the occurrence of thunderstorms from 1850 to 2010 (a period of 160 years) in the city of Rio de Janeiro, in the Southeast of Brazil. During this period thunderstorm days were recorded in the same location, making this time series one of the longest series of this type available worldwide. The data support an increase of 21% in the mean annual thunderstorm days during the period, while surface temperature i</span><span><span style="font-family:Verdana;">ncreased by 0.6</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C during the period. Considering that the mean annua</span></span><span style="font-family:Verdana;">l number of thunderstorm in the beginning of this period was 29, we found an increase of one thunderstorm day per 0.1</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C of increase in the surface temperature. Assuming that the number of lightning flashes per thunderstorm remains approximately constant during the period</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> this number corresponds to an increase in the lightning flash rate of approximately 35% per </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">C of increase of temperature. In addition, considering that the increase of the global temperature during the period was almost the same that observed in Rio de Janeiro</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we can conclude that this increase in the lightning flash rate is due to the global warming with no effect of urban activity. Finally, we found that monthly thunderstorm days and monthly mean surface temperature show a linear correlation with a coefficient of 0.9 along the period.</span></span></span> </p>
基金supported by grants of National Key R&D Program of China(No.2016YFA0600401)National Nature Science Foundation of China(No.41672161)+1 种基金Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(164320H116)Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,and Key Laboratory of Virtual Geographic Environment(Nanjing Normal University)
文摘One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local humidity across Bond events (BE) in the PreboreaL During BEs 8 and 7, 1.5%o enrichments in jlSo values were generally consistent with high- to low-latitude climate changes. In detail, the decadal-scale minor j180 oscillations in BE8 were broadly less than the mean value, in contrast to the significant changes in local soil moisture derived from the j13C values and layer records. In the mid-BE7, jlSo variability was generally above the average level, and higher- amplitude variations were observed in the three proxy indicators. Wavelet analysis on the total jlSo time series and across the specific time windows of BEs 8 and 7 identified periodicities of about 130, 60, and 20-a, respectively. Exceptionally strong in BE7, the 60-a cycle, pervasively observed in instrumental studies, became prominent starting at 11.4 kaBP. Thus, glacial background conditions are important for suppressing the ASM intensity in BE8, while during BE7, tropical hydrological circulations were potentially actively involved. Consequently, climate internal oscillations, analogous to modern conditions, might have occurred in the distant past once the link between the tropical ocean and atmosphere was established as occurs today.
文摘Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.
基金supported and financed by the National Basic Research Program of China(973 Program,2010CB951504)the National Natural Science Foundation of China(41271112)the National Non-Profit Institute Research Grant of Chinese Academy of Agricultural Sciences,China(IARRP-2014-2)
文摘To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Sciences,China (No. KZCX2-413).
文摘China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.
文摘Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB40000000,XDA23060100)National Natural Science Foundation of China(No.42077455)+1 种基金Western Light Talent Program(Category A)(No.2018-99)United Fund of Karst Science Research Center(No.U1612441)。
文摘Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.
基金Major Project of Key Research Bases of Humanities and Social Sciences of Ministry of Education(05JJD630035)Major International Joint Research Program Founded by National Natural Science Foundation of China(50246003)Major Project(90410016)
文摘Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.
基金The research was financially supported by the Pro-gram for Energy Research and Develop (PERD) of Canada"The Hundred-Talent Project" of the Chinese Academy of Sciences(0108140).
文摘Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.
文摘Earth is always changing. Knowledge about where changes happened is the first step for us to understand how these changes affect our lives. In this paper, we use a long-term leaf area index data (LAI) to identify where changes happened and where has experienced the strongest change around the globe during 1981-2006. Results show that, over the past 26 years, LAI has generally increased at a rate of 0.0013 per year around the globe. The strongest increasing trend is around 0.0032 per year in the middle and northern high latitudes (north of 30°N). LAI has prominently increased in Europe, Siberia, Indian Peninsula, America and south Canada, South region of Sahara, southwest corner of Australia and Kgalagadi Basin; while noticeably decreased in Southeast Asia, southeastern China, central Africa, central and southern South America and arctic areas in North America.
基金Project supported by Qingdao special project for outstanding young scientists (04-3-JJ-03), "100 Talents Project " and the Science Innovation Key Projects of the Chinese Academy of Sciences (No. KZCX1-SW- 01-08) and the National Science Foundation for Young Scientists of China (No.49925614).
文摘High-precision isotope composition determinations using multicollector, magnetic-sector induc- tively coupled plasma mass spectrometry (MC-ICPMS) have recently revealed that some transition metal isotopes such as those of Mo, Fe, Cu, Zn etc. can be used as biogeochemical tracers in global change research. The Mo isotope system may be useful in paleoredox investigations indicating that δ97/95Mo in seawater may co-vary with changes in the relative proportions of anoxic and oxic sedimentation in the ocean, and that this variation may be recorded inδ97/95Mo of anoxic sediments. The Mo continental flux into the oceans and the global Mo isotope budget can be estimated fromδ97/95Mo values. The Fe isotope composition in seawater is an important issue because Fe plays a controlling role in biological productivity in the oceans and its abundance in seawater may have substantial effect on climate changes. Iron isotope fractionations could result from bio- and abio-processes and have about 0.1% variation (δ56/54Fe), so Fe isotopes considered alone cannot be used to distinguish the products of abiotic and biotic Fe processing in geological records. Cu and Zn isotopes are also used as biogeochemical tracers, but the researches are relatively less. This review mainly focuses on the methods for preparation, purification and determination of new isotope tracer samples, and on isotope applications in marine environmental changes.
基金financially supported by the National Science and Technology Support Plan (2014BAC15B03)the National Natural Science Foundation of China (41371503, 41371128)the West Light Foundation of the Chinese Academy of Sciences (YB201302)
文摘Soil carbon pools could become a CO_2 source or sink, depending on the directions of land use/cover changes. A slight change of soil carbon will inevitably affect the atmospheric CO_2 concentration and consequently the climate. Based on the data from 127 soil sample sites, 48 vegetation survey plots, and Landsat TM images, we analyzed the land use/cover changes, estimated soil organic carbon(SOC) storage and vegetation carbon storage of grassland, and discussed the impact of grassland changes on carbon storage during 2000 to 2013 in the Ili River Valley of Northwest China. The results indicate that the areal extents of forestland, shrubland, moderate-coverage grassland(MCG), and the waterbody(including glaciers) decreased while the areal extents of high-coverage grassland(HCG),low-coverage grassland(LCG), residential and industrial land, and cultivated land increased. The grassland SOC density in 0–100 cm depth varied with the coverage in a descending order of HCG〉MCG〉LCG.The regional grassland SOC storage in the depth of 0–100 cm in 2013 increased by 0.25×1011 kg compared with that in 2000. The regional vegetation carbon storage(S_(rvc)) of grassland was 5.27×10~9 kg in2013 and decreased by 15.7% compared to that in 2000. The vegetation carbon reserves of the under-ground parts of vegetation(S_(ruvb)) in 2013 was 0.68×10~9 kg and increased by approximately 19.01%compared to that in 2000. This research can improve our understanding about the impact of land use/cover changes on the carbon storage in arid areas of Northwest China.
基金National Key Program for Developing Basic Science(2016YFA0600303)National Natural Science Foundation of China(41675064,41621005,41330420,41275068)+2 种基金Jiangsu Province Science Foundation(SBK2015020577)Key Laboratory Project Foundation(KLME1501)Jiangsu Collaborative Innovation Center for Climate Change
文摘Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.