It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with ...It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.展开更多
The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifyin...The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.展开更多
Expert opinions have been used in a variety of fields to identify relevant issues and courses of action. This study surveys experts in forestry and climate change from the Asia–Pacific region to gauge their perspecti...Expert opinions have been used in a variety of fields to identify relevant issues and courses of action. This study surveys experts in forestry and climate change from the Asia–Pacific region to gauge their perspectives on the impacts of climate change and on the challenges faced by forest adaptation in the region, and explores recommendations and initiatives for adapting forests to climate change. There was consensus regarding the impacts of climate change on forest ecosystems and on economic sectors such as agriculture and forestry. Respondents also indicated a lack of public awareness and policy and legislation as challenges to addressing climate change. However, the results indicate differences in opinion between regions on the negative impacts of climate change and in satisfaction with actions taken to address climate change,highlighting the need for locally specific policies and research. The study presents specific recommendations to address issues of most concern, based on subregion and professional affiliation throughout the Asia–Pacific region.The results can be used to improve policy and forest management throughout the region. This research will also provide valuable suggestions on how to apply research findings and management recommendations outside of the AP region. The conclusions should be communicated relative to the level of the research and the target audience,ensuring that scientific findings and management recommendations are effectively communicated to ensure successful implementation of forest adaptation strategies.展开更多
Forest wastes are renewable resources that can serve as sources of energy for heat and electricity generation. How these materials are managed in order to reduce their contribution to the release of greenhouse gases, ...Forest wastes are renewable resources that can serve as sources of energy for heat and electricity generation. How these materials are managed in order to reduce their contribution to the release of greenhouse gases, reduce subsequent climate change challenges and their potential use in bio-energy production has remained a myth in Nigeria. In this paper, extensive review of the literature was carried out to arrive at the findings. More than 93% of all wood processing industries in Nigeria are sawmills. In addition to sawmills there are the plywood mills, furniture processing industries, and particleboard mills. Sawdust is the major waste generated from wood processing in the various processing units. Currently, the most popular waste management practice in Nigeria is burning. Dumping in open spaces, riverbanks, and water bodies is also obtainable. There is no record of wood waste recycling for bio-fuel production at the moment. Wood wastes are reused for agricultural production (mulching, manure) and as firewood. These actions contribute to the release of greenhouse gases and subsequently contribute to global warming. There are policies and agencies put in place to address this menace but implementation is a problem. An increase in proper waste management education and awareness, and aid from developed countries in terms of providing the technology needed for recycling and incineration, will go a long way in ensuring the safety (from climate change and consequences) of the local people, the environment, and the world at large.展开更多
Mitigation and adaptation have become two main strategies that governments around the world are focusing on in response to the threat of global climate change. In August 2009, Typhoon Morakot heavily damaged the centr...Mitigation and adaptation have become two main strategies that governments around the world are focusing on in response to the threat of global climate change. In August 2009, Typhoon Morakot heavily damaged the central and southern parts of Taiwan, causing irreversible damage to the environment, especially in the mountain areas. In this study, the goal is to attain sustainable reservoir management, thus comprehensive storm water management is used to develop mitigation strategies. Overlay-map methods of GIS, along with vulnerability analysis and land use sustainability analysis, are used to map out optimal land use patterns containing development potentials, growth limits, and suitability concerns that aim to reduce the impact of human development on the ecological environment. Finally, the mitigation strategies proposed by this study for the land use of Zengwen Reservoir and its catchment will be implement shortly.展开更多
基金Under the auspices of International Science and Technology Cooperation Project(No.2010DFA22480)Major State Basic Research Development Program of China(No.2010CB833503)
文摘It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
基金carried out in the framework of the EBOR-project funded by the Academy of Finland(Proj.No.276255)
文摘The circumboreal forest encompasses diverse landscape structures, dynamics and forest age distributions determined by their physical setting, and historical and current disturbance regimes. However, due to intensifying forest utilisation, and in certain areas due to increasing natural disturbances, boreal forest age-class structures have changed rapidly, so that the proportion of old forest has substantially declined, while that of young post-harvest and post-natural-disturbance forest proportions have increased. In the future, with a warming climate in certain boreal regions, this trend may further be enhanced due to an increase in natural disturbances and large-scale use of forest biomass to replace fossil-based fuels and products.The major drivers of change of forest age class distributions and structures include the use of clearcut shortrotation harvesting, more frequent and severe natural disturbances due to climate warming in certain regions. The decline in old forest area, and increase in managed young forest lacking natural post-disturbance structural legacies,represent a major transformation in the ecological conditions of the boreal forest beyond historical limits of variability.This may introduce a threat to biodiversity, ecosystem resilience and long-term adaptive capacity of the forest ecosystem.To safeguard boreal forest biodiversity and ecosystem functioning, and to maintain the multiple services provided to societies by this forest biome, it is pivotal to maintain an adequate share and the ecological qualities of young postdisturbance stages, along with mature forest stages with old-growth characteristics. This requires management for natural post-disturbance legacy structures, and innovative use of diverse uneven-aged and continuous cover management approaches to maintain critical late-successional forest structures in landscapes.
基金supported by the Asia Pacific Network for Sustainable Forest Management and Rehabilitation(APFNet)under the project ‘‘Adaption of Asia Pacific Forests to Climate Change’’
文摘Expert opinions have been used in a variety of fields to identify relevant issues and courses of action. This study surveys experts in forestry and climate change from the Asia–Pacific region to gauge their perspectives on the impacts of climate change and on the challenges faced by forest adaptation in the region, and explores recommendations and initiatives for adapting forests to climate change. There was consensus regarding the impacts of climate change on forest ecosystems and on economic sectors such as agriculture and forestry. Respondents also indicated a lack of public awareness and policy and legislation as challenges to addressing climate change. However, the results indicate differences in opinion between regions on the negative impacts of climate change and in satisfaction with actions taken to address climate change,highlighting the need for locally specific policies and research. The study presents specific recommendations to address issues of most concern, based on subregion and professional affiliation throughout the Asia–Pacific region.The results can be used to improve policy and forest management throughout the region. This research will also provide valuable suggestions on how to apply research findings and management recommendations outside of the AP region. The conclusions should be communicated relative to the level of the research and the target audience,ensuring that scientific findings and management recommendations are effectively communicated to ensure successful implementation of forest adaptation strategies.
文摘Forest wastes are renewable resources that can serve as sources of energy for heat and electricity generation. How these materials are managed in order to reduce their contribution to the release of greenhouse gases, reduce subsequent climate change challenges and their potential use in bio-energy production has remained a myth in Nigeria. In this paper, extensive review of the literature was carried out to arrive at the findings. More than 93% of all wood processing industries in Nigeria are sawmills. In addition to sawmills there are the plywood mills, furniture processing industries, and particleboard mills. Sawdust is the major waste generated from wood processing in the various processing units. Currently, the most popular waste management practice in Nigeria is burning. Dumping in open spaces, riverbanks, and water bodies is also obtainable. There is no record of wood waste recycling for bio-fuel production at the moment. Wood wastes are reused for agricultural production (mulching, manure) and as firewood. These actions contribute to the release of greenhouse gases and subsequently contribute to global warming. There are policies and agencies put in place to address this menace but implementation is a problem. An increase in proper waste management education and awareness, and aid from developed countries in terms of providing the technology needed for recycling and incineration, will go a long way in ensuring the safety (from climate change and consequences) of the local people, the environment, and the world at large.
文摘Mitigation and adaptation have become two main strategies that governments around the world are focusing on in response to the threat of global climate change. In August 2009, Typhoon Morakot heavily damaged the central and southern parts of Taiwan, causing irreversible damage to the environment, especially in the mountain areas. In this study, the goal is to attain sustainable reservoir management, thus comprehensive storm water management is used to develop mitigation strategies. Overlay-map methods of GIS, along with vulnerability analysis and land use sustainability analysis, are used to map out optimal land use patterns containing development potentials, growth limits, and suitability concerns that aim to reduce the impact of human development on the ecological environment. Finally, the mitigation strategies proposed by this study for the land use of Zengwen Reservoir and its catchment will be implement shortly.