The influence of human activities on environment and climate change is the most conspicuous problem of the Loess Plateau, and it may be divided into two aspects: firstly, the excessive utilization of land by the human...The influence of human activities on environment and climate change is the most conspicuous problem of the Loess Plateau, and it may be divided into two aspects: firstly, the excessive utilization of land by the human race causes the destruction of vegetation, and consequently large expanse of land is under desertification and the characteristics of the ground surface and the water and heat exchange on the ground surface have changed; secondly, the use of coal by industries produces a huge amount of carbon dioxide and trace elements, which enter into the atmosphere to cause air pollution.Data of 1951-1990 are collected from 69 meteorological stations on the Loess Plateau. After analysis, the decadal variations of temperature and rainfall in the last 40 years are obtained as follows: (1) In the arid zone of the north- west of the Loess Plateau, the increase in temperature is the largest. For the past 40 years, the annual mean temperature has increased 0.7-1.0 ℃ . In the semiarid zone of the middle展开更多
To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, in...To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including:(1) the role of climate change in global change;(2) the critical time scales and predictability of global change;(3) the sensitive regions of global change—transitional zones of climate and ecosystems; and(4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.展开更多
Our knowledge about the interaction between human activities and the environment in the middle-late Holocene remains incomplete.Core C1 in Lake Chaohu from the middle and lower reaches of Yangtze River (MLYR),eastern ...Our knowledge about the interaction between human activities and the environment in the middle-late Holocene remains incomplete.Core C1 in Lake Chaohu from the middle and lower reaches of Yangtze River (MLYR),eastern China,provides an opportunity to investigate vegetation and climate changes,human activities,and East Asian summer monsoon(EASM) evolution since 5100 cal.yr BP.These variables are assessed based on radiocarbon dating,pollen and charcoal records,and magnetic susceptibility (χ_(lf)),median grain size and TP.Results reveal a hiatus in sedimentation between 2080 and 730 cal.yr BP in the western part of Lake Chaohu,which is common in most lakes in the MLYR.Evergreen and deciduous broadleaved mixed forest retreated gradually after 3650 cal.yr BP,and was replaced by secondary Pinus forest after at least 730 cal.yr BP.Intense agricultural activities and vegetation clearance are first detected at 2520 cal.yr BP.Human settlements expanded from the lake front wetlands (during the period 2520–2080 cal.yr BP) to remote high-altitude areas(2080–400 cal.yr BP),and then returned to the lake front to reclaim the wetlands and lake (after 400 cal.yr BP).A gradual trend of recessional EASM strength from 4300 cal.yr BP and centennial-scale variations of EASM during the period5100–3650 cal.yr BP are revealed.The reduction of summer insolation,southward shift of the ITCZ,and El Ni?o Southern Oscillation may control the intensity of EASM and climate on a large regional scale.展开更多
The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we a...The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we analyzed and discussed the spatial-temporal change patterns and the driving mechanisms of net primary productivity(NPP)in the Qinghai–Tibet Plateau from 2000 to 2015 based on the gravity center and correlation coefficient models.Subsequently,we quantitatively distinguished the relative effects of climate change(such as precipitation,temperature and evapotranspiration)and human activities(such as grazing and ecological construction)on the NPP changes using scenario analysis and Miami model based on the MOD17A3 and meteorological data.The average annual NPP in the Qinghai–Tibet Plateau showed a decreasing trend from the southeast to the northwest during 2000–2015.With respect to the inter-annual changes,the average annual NPP exhibited a fluctuating upward trend from 2000 to 2015,with a steep increase observed in 2005 and a high fluctuation observed from 2005 to 2015.In the Qinghai–Tibet Plateau,the regions with the increase in NPP(change rate higher than 10%)were mainly concentrated in the Three-River Source Region,the northern Hengduan Mountains,the middle and lower reaches of the Yarlung Zangbo River,and the eastern parts of the North Tibet Plateau,whereas the regions with the decrease in NPP(change rate lower than–10%)were mainly concentrated in the upper reaches of the Yarlung Zangbo River and the Ali Plateau.The gravity center of NPP in the Qinghai–Tibet Plateau has moved southwestward during 2000–2015,indicating that the increment and growth rate of NPP in the southwestern part is greater than those of NPP in the northeastern part.Further,a significant correlation was observed between NPP and climate factors in the Qinghai–Tibet Plateau.The regions exhibiting a significant correlation between NPP and precipitation were mainly located in the central and eastern Qinghai–Tibet Plateau,and the regions exhibiting a significant correlation between NPP and temperature were mainly located in the southern and eastern Qinghai–Tibet Plateau.Furthermore,the relative effects of climate change and human activities on the NPP changes in the Qinghai–Tibet Plateau exhibited significant spatial differences in three types of zones,i.e.,the climate change-dominant zone,the human activity-dominant zone,and the climate change and human activity interaction zone.These research results can provide theoretical and methodological supports to reveal the driving mechanisms of the regional ecosystems to the global change in the Qinghai–Tibet Plateau.展开更多
Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ...Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ecological index(RSEI)model for this region by combining dryness,moisture,greenness,and desertification indicators.Using the Moderate-resolution Imaging Spectroradiometer(MODIS)data in Google Earth Engine(GEE)platform,this study analyzed the ecological environment quality of the Sahel region during the period of 2001-2020.We used liner regression and fluctuation analysis methods to study the trend and fluctuation of RSEI,and utilized the stepwise regression approach to analyze the contribution of each indicator to the RSEI.Further,the correlation analysis was used to analyze the correlation between RSEI and precipitation,and Hurst index was applied to evaluate the change trend of RSEI in the future.The results show that RSEI of the Sahel region exhibited spatial heterogeneity.Specifically,it exhibited a decrease in gradient from south to north of the Sahel region.Moreover,RSEI in parts of the Sahel region presented non-zonal features.Different land-cover types demonstrated different RSEI values and changing trends.We found that RSEI and precipitation were positively correlated,suggesting that precipitation is the controlling factor of RSEI.The areas where RSEI values presented an increasing trend were slightly less than the areas where RSEI values presented a decreasing trend.In the Sahel region,the areas with the ecological environment characterized by continuous deterioration and continuous improvement accounted for 44.02%and 28.29%of the total study area,respectively,and the areas in which the ecological environment was changing from improvement to deterioration and from deterioration to improvement accounted for 12.42%and 15.26%of the whole area,respectively.In the face of the current ecological environment and future change trends of RSEI in the Sahel region,the research results provide a reference for the construction of the"Green Great Wall"(GGW)ecological environment project in Africa.展开更多
Global change,which refers to large-scale changes in the earth system and human society,has been changing the outbreak and transmission mode of many infectious diseases.Climate change affects infectious diseases direc...Global change,which refers to large-scale changes in the earth system and human society,has been changing the outbreak and transmission mode of many infectious diseases.Climate change affects infectious diseases directly and indirectly.Meteorological factors including temperature,precipitation,humidity and radiation influence infectious disease by modulating pathogen,host and transmission pathways.Meteorological disasters such as droughts and floods directly impact the outbreak and transmission of infectious diseases.Climate change indirectly impacts infectious diseases by altering the ecological system,including its underlying surface and vegetation distribution.In addition,anthropogenic activities are a driving force for climate change and an indirect forcing of infectious disease transmission.International travel and rural-urban migration are a root cause of infectious disease transmission.Rapid urbanization along with poor infrastructure and high disease risk in the rural-urban fringe has been changing the pattern of disease outbreaks and mortality.Land use changes,such as agricultural expansion and deforestation,have already changed the transmission of infectious disease.Accelerated air,road and rail transportation development may not only increase the transmission speed of outbreaks,but also enlarge the scope of transmission area.In addition,more frequent trade and other economic activities will also increase the potential risks of disease outbreaks and facilitate the spread of infectious diseases.展开更多
In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the mag...In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.展开更多
文摘The influence of human activities on environment and climate change is the most conspicuous problem of the Loess Plateau, and it may be divided into two aspects: firstly, the excessive utilization of land by the human race causes the destruction of vegetation, and consequently large expanse of land is under desertification and the characteristics of the ground surface and the water and heat exchange on the ground surface have changed; secondly, the use of coal by industries produces a huge amount of carbon dioxide and trace elements, which enter into the atmosphere to cause air pollution.Data of 1951-1990 are collected from 69 meteorological stations on the Loess Plateau. After analysis, the decadal variations of temperature and rainfall in the last 40 years are obtained as follows: (1) In the arid zone of the north- west of the Loess Plateau, the increase in temperature is the largest. For the past 40 years, the annual mean temperature has increased 0.7-1.0 ℃ . In the semiarid zone of the middle
文摘To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including:(1) the role of climate change in global change;(2) the critical time scales and predictability of global change;(3) the sensitive regions of global change—transitional zones of climate and ecosystems; and(4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFF0801101)the National Natural Science Foundation of China (Grant Nos.42077424,41877434,42171161)。
文摘Our knowledge about the interaction between human activities and the environment in the middle-late Holocene remains incomplete.Core C1 in Lake Chaohu from the middle and lower reaches of Yangtze River (MLYR),eastern China,provides an opportunity to investigate vegetation and climate changes,human activities,and East Asian summer monsoon(EASM) evolution since 5100 cal.yr BP.These variables are assessed based on radiocarbon dating,pollen and charcoal records,and magnetic susceptibility (χ_(lf)),median grain size and TP.Results reveal a hiatus in sedimentation between 2080 and 730 cal.yr BP in the western part of Lake Chaohu,which is common in most lakes in the MLYR.Evergreen and deciduous broadleaved mixed forest retreated gradually after 3650 cal.yr BP,and was replaced by secondary Pinus forest after at least 730 cal.yr BP.Intense agricultural activities and vegetation clearance are first detected at 2520 cal.yr BP.Human settlements expanded from the lake front wetlands (during the period 2520–2080 cal.yr BP) to remote high-altitude areas(2080–400 cal.yr BP),and then returned to the lake front to reclaim the wetlands and lake (after 400 cal.yr BP).A gradual trend of recessional EASM strength from 4300 cal.yr BP and centennial-scale variations of EASM during the period5100–3650 cal.yr BP are revealed.The reduction of summer insolation,southward shift of the ITCZ,and El Ni?o Southern Oscillation may control the intensity of EASM and climate on a large regional scale.
基金supported by the Natural Science Foundation of Shandong Province(ZR2018BD001)the Project of Shandong Province Higher Educational Science and Technology Program(J18KA181)+4 种基金the Key Research Program of Frontier Science of Chinese Academy of Sciences(QYZDY-SSW-DQC007)the Open Fund of Key Laboratory of Geographic Information Science(Ministry of Education),East China Normal University(KLGIS2017A02)the Open Fund of State Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(17I04)the Open Fund of Key Laboratory of Geomatics and Digital Technology of Shandong Provincethe National Key R&D Program of China(2017YFA0604804)
文摘The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we analyzed and discussed the spatial-temporal change patterns and the driving mechanisms of net primary productivity(NPP)in the Qinghai–Tibet Plateau from 2000 to 2015 based on the gravity center and correlation coefficient models.Subsequently,we quantitatively distinguished the relative effects of climate change(such as precipitation,temperature and evapotranspiration)and human activities(such as grazing and ecological construction)on the NPP changes using scenario analysis and Miami model based on the MOD17A3 and meteorological data.The average annual NPP in the Qinghai–Tibet Plateau showed a decreasing trend from the southeast to the northwest during 2000–2015.With respect to the inter-annual changes,the average annual NPP exhibited a fluctuating upward trend from 2000 to 2015,with a steep increase observed in 2005 and a high fluctuation observed from 2005 to 2015.In the Qinghai–Tibet Plateau,the regions with the increase in NPP(change rate higher than 10%)were mainly concentrated in the Three-River Source Region,the northern Hengduan Mountains,the middle and lower reaches of the Yarlung Zangbo River,and the eastern parts of the North Tibet Plateau,whereas the regions with the decrease in NPP(change rate lower than–10%)were mainly concentrated in the upper reaches of the Yarlung Zangbo River and the Ali Plateau.The gravity center of NPP in the Qinghai–Tibet Plateau has moved southwestward during 2000–2015,indicating that the increment and growth rate of NPP in the southwestern part is greater than those of NPP in the northeastern part.Further,a significant correlation was observed between NPP and climate factors in the Qinghai–Tibet Plateau.The regions exhibiting a significant correlation between NPP and precipitation were mainly located in the central and eastern Qinghai–Tibet Plateau,and the regions exhibiting a significant correlation between NPP and temperature were mainly located in the southern and eastern Qinghai–Tibet Plateau.Furthermore,the relative effects of climate change and human activities on the NPP changes in the Qinghai–Tibet Plateau exhibited significant spatial differences in three types of zones,i.e.,the climate change-dominant zone,the human activity-dominant zone,and the climate change and human activity interaction zone.These research results can provide theoretical and methodological supports to reveal the driving mechanisms of the regional ecosystems to the global change in the Qinghai–Tibet Plateau.
基金This research was financially supported by the West Light Foundation of the Chinese Academy of Science(2017-XBQNXZ-B-018)the National Natural Science Foundation of China(41861144020)the National Key Research and Development Program of China-Joint Research on Technology to Combat Desertification for African Countries of the“Great Green Wall”(2018YFE0106000).
文摘Long-term monitoring of the ecological environment changes is helpful for the protection of the ecological environment.Based on the ecological environment of the Sahel region in Africa,we established a remote sensing ecological index(RSEI)model for this region by combining dryness,moisture,greenness,and desertification indicators.Using the Moderate-resolution Imaging Spectroradiometer(MODIS)data in Google Earth Engine(GEE)platform,this study analyzed the ecological environment quality of the Sahel region during the period of 2001-2020.We used liner regression and fluctuation analysis methods to study the trend and fluctuation of RSEI,and utilized the stepwise regression approach to analyze the contribution of each indicator to the RSEI.Further,the correlation analysis was used to analyze the correlation between RSEI and precipitation,and Hurst index was applied to evaluate the change trend of RSEI in the future.The results show that RSEI of the Sahel region exhibited spatial heterogeneity.Specifically,it exhibited a decrease in gradient from south to north of the Sahel region.Moreover,RSEI in parts of the Sahel region presented non-zonal features.Different land-cover types demonstrated different RSEI values and changing trends.We found that RSEI and precipitation were positively correlated,suggesting that precipitation is the controlling factor of RSEI.The areas where RSEI values presented an increasing trend were slightly less than the areas where RSEI values presented a decreasing trend.In the Sahel region,the areas with the ecological environment characterized by continuous deterioration and continuous improvement accounted for 44.02%and 28.29%of the total study area,respectively,and the areas in which the ecological environment was changing from improvement to deterioration and from deterioration to improvement accounted for 12.42%and 15.26%of the whole area,respectively.In the face of the current ecological environment and future change trends of RSEI in the Sahel region,the research results provide a reference for the construction of the"Green Great Wall"(GGW)ecological environment project in Africa.
基金supported by the National Research Program of the Ministry of Science and Technology,China(Grant Nos.2010CB530300,2012CB955501,2013AA122003&2012AA12A407)the National Natural Science Foundation of China(Grant No.41271099)China Postdoctoral Science Foundation(Grant No.2012M510344)
文摘Global change,which refers to large-scale changes in the earth system and human society,has been changing the outbreak and transmission mode of many infectious diseases.Climate change affects infectious diseases directly and indirectly.Meteorological factors including temperature,precipitation,humidity and radiation influence infectious disease by modulating pathogen,host and transmission pathways.Meteorological disasters such as droughts and floods directly impact the outbreak and transmission of infectious diseases.Climate change indirectly impacts infectious diseases by altering the ecological system,including its underlying surface and vegetation distribution.In addition,anthropogenic activities are a driving force for climate change and an indirect forcing of infectious disease transmission.International travel and rural-urban migration are a root cause of infectious disease transmission.Rapid urbanization along with poor infrastructure and high disease risk in the rural-urban fringe has been changing the pattern of disease outbreaks and mortality.Land use changes,such as agricultural expansion and deforestation,have already changed the transmission of infectious disease.Accelerated air,road and rail transportation development may not only increase the transmission speed of outbreaks,but also enlarge the scope of transmission area.In addition,more frequent trade and other economic activities will also increase the potential risks of disease outbreaks and facilitate the spread of infectious diseases.
基金supported by the Academic Division of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant No. 31021001)the National Basic Research Program of China (Grant No. 2010CB950600)
文摘In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.