期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
Finite-Time Synchronization for Heterogeneous Complex Networks with Time-Varying Delays 被引量:1
1
作者 Yicong Ma Yali Tai 《Applied Mathematics》 2020年第10期1000-1012,共13页
This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain distu... This paper studies the problem of finite-time synchronization for a class of heterogeneous complex networks which not only have node time-varying delays and coupled time-varying delays but also contain uncertain disturbance. An appropriate controller is designed such that this type of network can be synchronized within a finite time. By constructing a proper Lyapunov function and using the finite-time stability theory, the sufficient conditions for the network to achieve finite-time synchronization are given and the finite time is estimated. Finally, the conclusions obtained are extended to the case of homogeneous complex networks with time-varying delays and uncertain disturbance. 展开更多
关键词 finite-time synchronization HETEROGENEOUS Time-Varying Delays Uncertain Disturbance
下载PDF
Finite-Time Synchronization of Fractional-Order Chaotic Systems with Different Structures under Stochastic Disturbances 被引量:1
2
作者 Weiqiu Pan Tianzeng Li 《Journal of Computer and Communications》 2021年第6期120-137,共18页
This paper studies the finite-time synchronization of fractional-order chaotic systems with different structures under parameter disturbance and external disturbance. We put forward a fractional-order controller that ... This paper studies the finite-time synchronization of fractional-order chaotic systems with different structures under parameter disturbance and external disturbance. We put forward a fractional-order controller that can achieve the finite-time synchronization of any-order fractional-order chaotic systems under stochastic disturbances. This controller has good robustness and anti-interference performance. With the concept of the finite-time stability theory given, some judgment criterions for the synchronization of fractional-order chaotic systems are proved. This method can not only make the error systems have a faster convergence rate but also can be implemented in engineering easily. The numerical simulations of two specific examples demonstrate the effectiveness of the method. At the same time, the synchronised time of finite-time synchronization is shorter and faster than the complete synchronization and the time can be adjusted according to the parameters in the controller. 展开更多
关键词 Fractional Order CHAOS finite-time synchronization Stochastic Disturbance
下载PDF
Finite-time sliding mode synchronization of chaotic systems
3
作者 倪骏康 刘崇新 +1 位作者 刘凯 刘凌 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期80-86,共7页
A new finite-time sliding mode control approach is presented for synchronizing two different topological structure chaotic systems. With the help of the Lyapunov method, the convergence property of the proposed contro... A new finite-time sliding mode control approach is presented for synchronizing two different topological structure chaotic systems. With the help of the Lyapunov method, the convergence property of the proposed control strategy is discussed in a rigorous manner. Furthermore, it is mathematically proved that our control strategy has a faster convergence speed than the conventional finite-time sliding mode control scheme. In addition, the proposed control strategy can ensure the finite-time synchronization between the master and the slave chaotic systems under internal uncertainties and external disturbances. Simulation results are provided to show the speediness and robustness of the proposed scheme. It is worth noticing that the proposed control scheme is applicable for secure communications. 展开更多
关键词 finite-time control sliding mode control chaos synchronization secure communication
下载PDF
Design of an adaptive finite-time controller for synchronization of two identical/different non-autonomous chaotic flywheel governor systems
4
作者 Mohammad Pourmahmood Aghababa 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期101-111,共11页
The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhi... The centrifugal flywheel governor (CFG) is a mechanical device that automatically controls the speed of an engine and avoids the damage caused by sudden change of load torque. It has been shown that this system exhibits very rich and complex dynamics such as chaos. This paper investigates the problem of robust finite-time synchronization of non-autonomous chaotic CFGs. The effects of unknown parameters, model uncertainties and external disturbances are fully taken into account. First, it is assumed that the parameters of both master and slave CFGs have the same value and a suitable adaptive finite-time controller is designed. Second, two CFGs are synchronized with the parameters of different values via a robust adaptive finite-time control approach. Finally, some numerical simulations are used to demonstrate the effectiveness and robustness of the proposed finite-time controllers. 展开更多
关键词 finite-time controller chaos synchronization non-autonomous centrifugal flywheel gov-ernor chaotic system
下载PDF
Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
5
作者 Hongwei Zhang Ran Cheng Dawei Ding 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期341-351,共11页
The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapuno... The finite-time synchronization of fractional-order multi-weighted complex networks(FMCNs)with uncertain parameters and external disturbances is studied.Firstly,based on fractional calculus characteristics and Lyapunov stability theory,quantized controllers are designed to guarantee that FMCNs can achieve synchronization in a limited time with and without coupling delay,respectively.Then,appropriate parameter update laws are obtained to identify the uncertain parameters in FMCNs.Finally,numerical simulation examples are given to validate the correctness of the theoretical results. 展开更多
关键词 fractional-order complex networks uncertain parameter finite-time synchronization quantized control
下载PDF
Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
6
作者 Chong Chen Zhixia Ding +1 位作者 Sai Li Liheng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期127-138,共12页
The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are ... The finite-time Mittag-Leffler synchronization is investigated for fractional-order delayed memristive neural networks(FDMNN)with parameters uncertainty and discontinuous activation functions.The relevant results are obtained under the framework of Filippov for such systems.Firstly,the novel feedback controller,which includes the discontinuous functions and time delays,is proposed to investigate such systems.Secondly,the conditions on finite-time Mittag-Leffler synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis technique.At the same time,the upper bound of the settling time for Mittag-Leffler synchronization is accurately estimated.In addition,by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for fractional-order systems,the global asymptotic synchronization is achieved as a corollary.Finally,a numerical example is given to indicate the correctness of the obtained conclusions. 展开更多
关键词 FRACTIONAL-ORDER DELAYED memristive neural networks(FDMNN) parameters uncertainty DISCONTINUOUS ACTIVATION functions finite-time Mittag-Leffler synchronization
下载PDF
Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
7
作者 Yong-Bing Hu Xiao-Min Yang +1 位作者 Da-Wei Ding Zong-Li Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期244-255,共12页
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.... Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method. 展开更多
关键词 multi-links network fractional order complex-valued network finite-time complex projective synchronization image encryption
下载PDF
Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses
8
作者 伍锡如 张煜翀 +1 位作者 张畑畑 张斌磊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期328-342,共15页
This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzz... This paper is concerned with the finite-time dissipative synchronization control problem of semi-Markov switched cyber-physical systems in the presence of packet losses, which is constructed by the Takagi–Sugeno fuzzy model. To save the network communication burden, a distributed dynamic event-triggered mechanism is developed to restrain the information update. Besides, random packet dropouts following the Bernoulli distribution are assumed to occur in sensor to controller channels, where the triggered control input is analyzed via an equivalent method containing a new stochastic variable. By establishing the mode-dependent Lyapunov–Krasovskii functional with augmented terms, the finite-time boundness of the error system limited to strict dissipativity is studied. As a result of the help of an extended reciprocally convex matrix inequality technique, less conservative criteria in terms of linear matrix inequalities are deduced to calculate the desired control gains. Finally, two examples in regard to practical systems are provided to display the effectiveness of the proposed theory. 展开更多
关键词 cyber-physical systems finite-time synchronization distributed dynamic event-triggered mechanism random packet losses
下载PDF
Fixed-Time and Finite-Time Synchronization for a Class of Output-Coupling Complex Networks via Continuous Control
9
作者 Zhiwei Li 《International Journal of Communications, Network and System Sciences》 2019年第10期151-169,共19页
This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization ... This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results. 展开更多
关键词 Output-Coupling Complex Networks Fixed-Time synchronization finite-time synchronization CONTINUOUS Controller
下载PDF
Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
10
作者 Ning Li Haiyi Sun +1 位作者 Xin Jing Zhongtang Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期184-193,共10页
The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The fin... The idea of network splitting according to time delay and weight is introduced.Based on the cyber physical systems(CPS),a class of multi-weighted complex transportation networks with multiple delays is modeled.The finite-time synchronization of the proposed complex transportation networks model is studied systematically.On the basis of the theory of stability,the technique of adaptive control,aperiodically intermittent control and finite-time control,the aperiodically intermittent adaptive finite-time synchronization controller is designed.The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays.In addition,the conditions for the existence of finite time synchronization have been discussed in detail.And the specific value of the settling finite time for synchronization is obtained.Moreover,the outer coupling configuration matrices are not required to be irreducible or symmetric.Finally,simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained. 展开更多
关键词 complex transportation networks adaptive finite-time synchronization multiple delays and multi-weighted aperiodically intermittent control
下载PDF
Finite-time Mittag-Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
11
作者 Guan Wang Zhixia Ding +2 位作者 Sai Li Le Yang Rui Jiao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期297-306,共10页
Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valu... Without dividing the complex-valued systems into two real-valued ones, a class of fractional-order complex-valued memristive neural networks(FCVMNNs) with time delay is investigated. Firstly, based on the complex-valued sign function, a novel complex-valued feedback controller is devised to research such systems. Under the framework of Filippov solution, differential inclusion theory and Lyapunov stability theorem, the finite-time Mittag-Leffler synchronization(FTMLS) of FCVMNNs with time delay can be realized. Meanwhile, the upper bound of the synchronization settling time(SST) is less conservative than previous results. In addition, by adjusting controller parameters, the global asymptotic synchronization of FCVMNNs with time delay can also be realized, which improves and enrich some existing results. Lastly,some simulation examples are designed to verify the validity of conclusions. 展开更多
关键词 finite-time Mittag-Leffler synchronization fractional-order complex-valued memristive neural networks time delay
下载PDF
Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory 被引量:15
12
作者 韦笃取 张波 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1399-1403,共5页
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear... This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. 展开更多
关键词 chaos control finite-time stability theory permanent magnet synchronous motor
下载PDF
A new four-dimensional chaotic system with first Lyapunov exponent of about 22,hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control 被引量:2
13
作者 Jay Prakash Singh Binoy Krishna Roy Zhouchao Wei 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期214-227,共14页
This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems... This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems.The proposed system exhibits hyperbolic curve and circular paraboloid types of equilibria.The system has all zero eigenvalues for a particular case of an equilibrium point.The system has various dynamical behaviors like hyperchaotic,chaotic,periodic,and quasi-periodic.The system also exhibits coexistence of attractors.Dynamical behavior of the new system is validated using circuit implementation.Further an interesting switching synchronization phenomenon is proposed for the new chaotic system.An adaptive global integral sliding mode control is designed for the switching synchronization of the proposed system.In the switching synchronization,the synchronization is shown for the switching chaotic,stable,periodic,and hybrid synchronization behaviors.Performance of the controller designed in the paper is compared with an existing controller. 展开更多
关键词 new hyperchaotic system maximum chaos an infinite number of equilibria hidden attractors switching synchronization global sliding mode control
下载PDF
Global synchronization of general delayed complex networks with stochastic disturbances 被引量:1
14
作者 涂俐兰 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期74-80,共7页
In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous... In this paper, global synchronization of general delayed complex networks with stochastic disturbances, which is a zero-mean real scalar Wiener process, is investigated. The networks under consideration are continuous-time networks with time-varying delay. Based on the stochastic Lyapunov stability theory, Ito's differential rule and the linear matrix inequality (LMI) optimization technique, several delay-dependent synchronous criteria are established, which guarantee the asymptotical mean-square synchronization of drive networks and response networks with stochastic disturbances. The criteria are expressed in terms of LMI, which can be easily solved using the Matlab LMI Control Toolbox. Finally, two examples show the effectiveness and feasibility of the proposed synchronous conditions. 展开更多
关键词 global synchronization general delayed complex networks with stochastic disturbances linear matrix inequality mean-square stability
下载PDF
A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs 被引量:1
15
作者 Mohammad Pourmahmood Aghababa 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期86-91,共6页
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod... In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller. 展开更多
关键词 chaotic gyro finite-time synchronization model uncertainty nonlinear input
下载PDF
Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure 被引量:1
16
作者 Zhi-Hai Wu Lin-Bo Xie 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期719-725,共7页
This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy o... This paper investigates fault-tolerant finite-time dynamical consensus problems of double-integrator multi-agent systems(MASs)with partial agents subject to synchronous self-sensing function failure(SSFF).A strategy of recovering the connectivity of network topology among normal agents based on multi-hop communication and a fault-tolerant finitetime dynamical consensus protocol with time-varying gains are proposed to resist synchronous SSFF.It is proved that double-integrator MASs with partial agents subject to synchronous SSFF using the proposed strategy of network topology connectivity recovery and fault-tolerant finite-time dynamical consensus protocol with the proper time-varying gains can achieve finite-time dynamical consensus.Numerical simulations are given to illustrate the effectiveness of the theoretical results. 展开更多
关键词 multi-agent systems synchronous self-sensing function failure finite-time dynamical consensus network topology connectivity recovery
下载PDF
Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay
17
作者 马铁东 浮洁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期204-209,共6页
This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lfi system and Chen system, which are regarded as the drive system and the resp... This paper proposes a nonlinear feedback control method to realize global exponential synchronization with channel time-delay between the Lfi system and Chen system, which are regarded as the drive system and the response system respectiveiy. Some effective observers are produced to identify the unknown parameters of the Lii system. Based on the Lyapunov stability theory and linear matrix inequality technique, some sufficient conditions of global exponential synchronization of the two chaotic systems are derived. Simulation results show the effectiveness and feasibility of the proposed controller. 展开更多
关键词 global exponential synchronization unknown parameters channel time-delay Lyapunovstability theory
下载PDF
Global Synchronization of Directed Networks with Fast Switching Topologies
18
作者 LU Xin-Biao QIN Bu-Zhi LU Xin-Yu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期1019-1024,共6页
Global synchronization of a class of directed dynamical networks with switching topologies is investigated.It is found that if there is a directed spanning tree in the fixed time-average of network topology and the ti... Global synchronization of a class of directed dynamical networks with switching topologies is investigated.It is found that if there is a directed spanning tree in the fixed time-average of network topology and the time-averageis achieved sufficiently fast,then the network will reach global synchronization for sufficiently large coupling strength. 展开更多
关键词 global synchronization directed network fast switch
下载PDF
Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology 被引量:9
19
作者 LIU Qiang FANG Jin-Qing LI Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第4期752-758,共7页
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructe... The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication. 展开更多
关键词 beam halo-chaos synchronization control small-world network beam transport network global linear coupling special linear feedback
下载PDF
Chaos Synchronization Criterion and Its Optimizations for a Nonlinear Transducer System via Linear State Error Feedback Control
20
作者 沈建和 陈树辉 蔡建平 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第6期1406-1409,共4页
Global chaos synchronization of two identical nonlinear transducer systems is investigated via linear state error feedback control. The sufficient criterion for global chaos synchronization is derived firstly by the G... Global chaos synchronization of two identical nonlinear transducer systems is investigated via linear state error feedback control. The sufficient criterion for global chaos synchronization is derived firstly by the Gerschgorin disc theorem and the stability theory of linear time-varied systems. Then this sufficient criterion is further optimized in the sense of reducing the lower bounds of the coupling coefficients with two methods, one based on Gerschgorin disc theorem itself and the other based on Lyapunov direct method. Finally, two optimized criteria are compared theoretically. 展开更多
关键词 global synchronization SECURE COMMUNICATION ACTIVE CONTROL
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部