期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessment of corrected time-step method for nominal ionospheric gradient calculation: A comparative analysis with spatial approaches
1
作者 Slamet Supriadi Prayitno Abadi +4 位作者 Susumu Saito Harry Bangkit Dwiko Unggul Prabowo Adi Purwono Ginaldi Ari Nugroho 《Earth and Planetary Physics》 EI CAS 2024年第4期641-649,共9页
The effect of ionospheric delay on the ground-based augmentation system under normal conditions can be mitigated by determining the value of the nominal ionospheric gradient(σvig).The nominal ionospheric gradient is ... The effect of ionospheric delay on the ground-based augmentation system under normal conditions can be mitigated by determining the value of the nominal ionospheric gradient(σvig).The nominal ionospheric gradient is generally obtained from Continuously Operating Reference Stations data by using the spatial single-difference method(mixed-pair,station-pair,or satellite-pair)or the temporal single-difference method(time-step).The time-step method uses only a single receiver,but it still contains ionospheric temporal variations.We introduce a corrected time-step method using a fixed-ionospheric pierce point from the geostationary equatorial orbit satellite and test it through simulations based on the global ionospheric model.We also investigate the effect of satellite paths on the corrected time-step method in the region of the equator,which tends to be in a more north–south direction and to have less coverage for the east–west ionospheric gradient.This study also addresses the limitations of temporal variation correction coverage and recommends using only the correction from self-observations.All processes are developed under simulations because observational data are still difficult to obtain.Our findings demonstrate that the corrected time-step method yieldsσvig values consistent with other approaches. 展开更多
关键词 ground-based augmentation system nominal ionospheric gradient time-step correction global ionospheric model
下载PDF
LEO Enhanced Global Navigation Satellite System(LeGNSS):progress,opportunities,and challenges 被引量:4
2
作者 Haibo Ge Bofeng Li +6 位作者 Song Jia Liangwei Nie Tianhao Wu Zhe Yang Jingzhe Shang Yanning Zheng Maorong Ge 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第1期1-13,共13页
With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to impr... With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination. 展开更多
关键词 LEO Enhanced global Navigation Satellite System(LeGNSS) orbit determination Precise Point Positioning(PPP) convergence time global ionosphere modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部