Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate t...Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate the potential of retrieving soil moisture using the L-band GPS bistatic radar, this paper analyzed a retrieval method by using field experiment data. In order to investigate the relation- ship between the soil moisture ( corresponding roughly to the 0 - 5cm top soil layer) and the signal- to-noise ratio (PT-S-R) to the direct GPS signal-to-noise ratio (Pd_sNR), an experiment was conducted in Hulunber grassland of China in 2009 and 2011. Six field sites in the soil moisture experiment were utilized to analyze the relationship between soil moisture and the ratio of Pr-SNR to Pd-SN~ and the square of correlation coefficient was about 0.9 when the surface type was known and the elevation angle of the satellite ranged from 65 to 85 degrees approximately. The analysis shows that ratio of Pr-SNR to Pd-SNR can be used to monitor the soil moisture, because the ratio of Pr-SVR to Pd-SNR maxi- mized the elimination of the influence of different signals from different GPS satellites. The estimation accuracy could be improved if we make full use of the empirical knowledge on elevation angles of GPS satellites and ground roughness of different surface types.展开更多
Signals from the Global Navigation Satellite System (GNSS) scatter over the sea surface resulting in relatively low Signal-to-Noise Ratios (SNR). A differential coherent algorithm is given here to improve the SNR ...Signals from the Global Navigation Satellite System (GNSS) scatter over the sea surface resulting in relatively low Signal-to-Noise Ratios (SNR). A differential coherent algorithm is given here to improve the SNR and reduce the performance degradation due to the Squaring-Loss and the navigation-bit effect. The algorithm uses fast navigation-bit correction for Delay-Doppler Maps (DDM) in airborne Global Navigation Satellite Signal Reflectometry (GNSS-R) software receivers. The system model is introduced with an analysis of the statistical properties with simulations to support the theoretical analysis. Field experiments with real airborne receivers then demonstrate the effectiveness of this algorithm. Comparisons with test results show that this algorithm offers a significant SNR gain over conventional algorithms.展开更多
The full constellation of Chinese Global Navigation Satellite System(GNSS)Bei Dou-3 has been deployed completely and started fully operational service.In addition to providing global Positioning,Navigation and Timing(...The full constellation of Chinese Global Navigation Satellite System(GNSS)Bei Dou-3 has been deployed completely and started fully operational service.In addition to providing global Positioning,Navigation and Timing(PNT)services,the Bei Dou-3 satellites transmissions can also be used as the sources of illumination for Earth Observation(EO)with a bistatic radar configuration.This innovative EO concept,known as GNSS reflectometry(GNSS-R),allows to measure the Earth surface characteristics at high resolution via the reflected L-band radar signals collected by a constellation of small,low cost and low Earth orbiting satellites.For the first time in orbit,earth reflected Bei Dou-3 signal has been detected from the limited sets of raw data collected by the NASA’s Cyclone GNSS(CYGNSS)constellation.The feasibility of spaceborne Bei Dou-3 reflections on two typical applications,including sea surface wind and flooding inundation detection,has been demonstrated.The methodology and results give new strength to the prospect of new spaceborne GNSS-R instruments and missions,which can make multi-GNSS reflectometry observations available to better capture rapidly changing weather systems at better spatio-temporal scales.展开更多
This paper presents the TDS-1 GNSS reflectometry wind Geophysical Model Function(GMF)response to GPS block types.The observables were extracted from Delay Doppler Maps(DDMs)after taking the receiver antenna gains effe...This paper presents the TDS-1 GNSS reflectometry wind Geophysical Model Function(GMF)response to GPS block types.The observables were extracted from Delay Doppler Maps(DDMs)after taking the receiver antenna gains effects and GNSS-R geometry effects into account.Since the DDM is affected by GPS EffectiveIsotropic Radiated Power(EIRP),we first investigate the sensitivity of observables to the GPS block.Additionally,the observables at high SNRs are more sensitive to wind speed,but the spatial coverage at high signal to noise ratios(SNRs)is lower,while DDMs at low SNRs have the opposite characteristics.To balance the accuracy and spatial coverage,the DDM datasets are divided into two parts:high SNR(>0 dB)and low SNR(>−10 dB and≤0 dB)to develop wind GMF.Then,the influences of GPS block on wind speed retrieval both at high and low SNR is analyzed.Results show that the block types have impacts on wind GMF and the use of a prior GPS block can contribute to a better wind speed retrieval both at high and low SNR.Compared with ASCAT,the Root Mean Square Error(RMSE)value of wind speed retrieval at high and low SNR are 2.19 m/s and 3.13 m/s,respectively,when all TDS data are processed without distinguishing GPS block types.However,if the TDS data are separately processed and used to develop wind GMF through different blocks,both the accuracy and correlation coefficient can be improved to some extent.Finally,the influence of significant height of the swell(Hs)on SNR observables is analyzed,and it is demonstrated that there is no obvious linear or nonlinear relationship between them.展开更多
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金Supported by the National Key Basic Research Program of China(No.2010CB951503,2013BAC03B00)
文摘Soil moisture is a key parameter in agricultural irrigation. The L band(1.58GHz) on board global position system (GPS) satellite is well suited for monitoring the change of soil moisture. In order to investigate the potential of retrieving soil moisture using the L-band GPS bistatic radar, this paper analyzed a retrieval method by using field experiment data. In order to investigate the relation- ship between the soil moisture ( corresponding roughly to the 0 - 5cm top soil layer) and the signal- to-noise ratio (PT-S-R) to the direct GPS signal-to-noise ratio (Pd_sNR), an experiment was conducted in Hulunber grassland of China in 2009 and 2011. Six field sites in the soil moisture experiment were utilized to analyze the relationship between soil moisture and the ratio of Pr-SNR to Pd-SN~ and the square of correlation coefficient was about 0.9 when the surface type was known and the elevation angle of the satellite ranged from 65 to 85 degrees approximately. The analysis shows that ratio of Pr-SNR to Pd-SNR can be used to monitor the soil moisture, because the ratio of Pr-SVR to Pd-SNR maxi- mized the elimination of the influence of different signals from different GPS satellites. The estimation accuracy could be improved if we make full use of the empirical knowledge on elevation angles of GPS satellites and ground roughness of different surface types.
基金supported in part by the National Natural Science Foundation of China(No.61171070)the National High-Tech Research and Development Program (863) of China(No.2011AA120501)
文摘Signals from the Global Navigation Satellite System (GNSS) scatter over the sea surface resulting in relatively low Signal-to-Noise Ratios (SNR). A differential coherent algorithm is given here to improve the SNR and reduce the performance degradation due to the Squaring-Loss and the navigation-bit effect. The algorithm uses fast navigation-bit correction for Delay-Doppler Maps (DDM) in airborne Global Navigation Satellite Signal Reflectometry (GNSS-R) software receivers. The system model is introduced with an analysis of the statistical properties with simulations to support the theoretical analysis. Field experiments with real airborne receivers then demonstrate the effectiveness of this algorithm. Comparisons with test results show that this algorithm offers a significant SNR gain over conventional algorithms.
基金supported in part by the Spanish Ministry of Economy and Competitiveness and EU/FEDER(ESP201570014-C2-2-R)the International Science and Technology Cooperation Projects of Shanghai(No.17220730600)the ESA-MOST China Dragon5 Program(ID.58070)。
文摘The full constellation of Chinese Global Navigation Satellite System(GNSS)Bei Dou-3 has been deployed completely and started fully operational service.In addition to providing global Positioning,Navigation and Timing(PNT)services,the Bei Dou-3 satellites transmissions can also be used as the sources of illumination for Earth Observation(EO)with a bistatic radar configuration.This innovative EO concept,known as GNSS reflectometry(GNSS-R),allows to measure the Earth surface characteristics at high resolution via the reflected L-band radar signals collected by a constellation of small,low cost and low Earth orbiting satellites.For the first time in orbit,earth reflected Bei Dou-3 signal has been detected from the limited sets of raw data collected by the NASA’s Cyclone GNSS(CYGNSS)constellation.The feasibility of spaceborne Bei Dou-3 reflections on two typical applications,including sea surface wind and flooding inundation detection,has been demonstrated.The methodology and results give new strength to the prospect of new spaceborne GNSS-R instruments and missions,which can make multi-GNSS reflectometry observations available to better capture rapidly changing weather systems at better spatio-temporal scales.
基金supported by the Funds for Creative Research Groups of China[Grant no.41721003]the National Natural Science Foundation of China[Grant nos.41825009 and 41774034].
文摘This paper presents the TDS-1 GNSS reflectometry wind Geophysical Model Function(GMF)response to GPS block types.The observables were extracted from Delay Doppler Maps(DDMs)after taking the receiver antenna gains effects and GNSS-R geometry effects into account.Since the DDM is affected by GPS EffectiveIsotropic Radiated Power(EIRP),we first investigate the sensitivity of observables to the GPS block.Additionally,the observables at high SNRs are more sensitive to wind speed,but the spatial coverage at high signal to noise ratios(SNRs)is lower,while DDMs at low SNRs have the opposite characteristics.To balance the accuracy and spatial coverage,the DDM datasets are divided into two parts:high SNR(>0 dB)and low SNR(>−10 dB and≤0 dB)to develop wind GMF.Then,the influences of GPS block on wind speed retrieval both at high and low SNR is analyzed.Results show that the block types have impacts on wind GMF and the use of a prior GPS block can contribute to a better wind speed retrieval both at high and low SNR.Compared with ASCAT,the Root Mean Square Error(RMSE)value of wind speed retrieval at high and low SNR are 2.19 m/s and 3.13 m/s,respectively,when all TDS data are processed without distinguishing GPS block types.However,if the TDS data are separately processed and used to develop wind GMF through different blocks,both the accuracy and correlation coefficient can be improved to some extent.Finally,the influence of significant height of the swell(Hs)on SNR observables is analyzed,and it is demonstrated that there is no obvious linear or nonlinear relationship between them.