The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can b...The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase wind- up calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.展开更多
基金Acknowledgements This work is sponsored by the National Natural Science Foundation of China (Grant Nos. 61372086, 11373017, 41201380, 41171327, and 41201379), Foundation of Science and Technology Commission of Shanghai (Nos. 13511500300 and 15511101602), Open Research Funding of the Key Laboratory of Embedded System and Service Computing (No. 48505280) and Open Research Funding Program of KLGIS (No. KLGIS2014A02).
文摘The multi-antenna synchronized global navi- gation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase wind- up calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.