The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation ...The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.展开更多
A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two mo...A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase L...The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.展开更多
Satellite signal simulator for global navigation satellite system(GNSS)can evaluate the accuracy of capturing,tracing and positioning of GNSS receiver.It has significant use-value in the military and civil fields.The ...Satellite signal simulator for global navigation satellite system(GNSS)can evaluate the accuracy of capturing,tracing and positioning of GNSS receiver.It has significant use-value in the military and civil fields.The system adopts the overall design scheme of digital signal processor(DSP)and field-programmable gate array(FPGA).It consists of four modules:industrial control computer simulation software,mid-frequency signal generator,digital-to-analog(D/A)module and radio frequency(RF)module.In this paper,we test the dynamic performance of simulator using the dynamic scenes testing method,and the signal generated by the designed simulator is primarily validated.展开更多
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o...In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.展开更多
Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satelli...Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to impr...With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.展开更多
In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in th...In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in the signals across different incident directions,resulting in distinct CNR variations for each signal.A model is developed to calculate the variation value of the signal CNR based on the antenna gain pattern.This model enables the differentiation of the variation values of the CNR for authentic satellite signals and spoofing signals,thereby facilitating spoofing detection.The proposed method is capable of detecting spoofing signals with power and CNR similar to those of authentic satellite signals.The accuracy of the signal CNR variation value calculation model and the effectiveness of the spoofing detection method are verified through a series of experiments.In addition,the proposed spoofing detection method works not only for a single spoofing source but also for distributed spoofing sources.展开更多
This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the ...This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.展开更多
When an aircraft moves under a low carrier-to-noise ratio (CNR) or at a high speed, increasing the sensitivity of global navigation satellite system (GNSS) receiver is a goal quite hard to achieve. A novel acquisi...When an aircraft moves under a low carrier-to-noise ratio (CNR) or at a high speed, increasing the sensitivity of global navigation satellite system (GNSS) receiver is a goal quite hard to achieve. A novel acquisition scheme assisted with micro-electro-mechanical-sensor (MEMS) inertial navigation system (INS) is presented to estimate the Doppler caused by user dynamics relative to each satellite ahead of time. Based on tightly coupled GNSS/INS estimation algorithm, MEMS INS Doppler error that can be achieved is first described. Then, by analyzing the mean acquisition time and signal detection probability, the MEMS INS-assisted acquisition capabilities in cold, warm and hot starts are quantitatively determined and compared with the standard GNSS acquisition capability. The simulations and comparisons have shown that: the acquisition time in cold start can be shortened by at least 23 s, the time in warm start can be shortened to i s and the acquisition capability is improved 95%, and the reaequisition time in hot start can be shortened by around 0.090 s and the capability can be enhanced 40%. The results demonstrate the validity of the novel method.展开更多
Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized...Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized for low-cost precise positioning or in ionospheric or tropospheric applications.This paper presents results from data collection campaigns using the CAMALIOT mobile app.In the frst campaign,116.3 billion measurements from 11,828 mobile devices were collected from all continents.Although participation decreased during the second campaign,data are still being collected globally.In this contribution,we demonstrate the potential of volunteered geographic information(VGl)from mobile phones to fill data gaps in geodetic station networks that collect GNSS data,e.g.in Brazil,but also how the data can provide a denser set of observations than current networks in countries across Europe.We also show that mobile phones capable of dual-frequency reception,which is an emerging technology that can provide a richer source of GNSS data,are contributing in a substantial way.Finally,we present the results from a survey of participants to indicate that participation is diverse in terms of backgrounds and geography,where the dominant motivation for participation is to contribute to scientific research.展开更多
In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the ...In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.展开更多
The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,...The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.展开更多
Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)sig...Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.展开更多
In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sit...In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content.展开更多
基金supported by the National Natural Science Foundation of China(41804035,41374027)。
文摘The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.
基金supported by the NSFC-Guangdong (Grant No.U1035002) and NSFC-NSAF (Grant No.10976010)National Key Project of Science and Technology of China (Grant No. 2009ZX03006-003)the Technology Key Projects of Guangdong Province of China (Grant Nos.2009A080207006 and 2009A080207002)
文摘A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
基金Supported by the National Natural Science Foundation of China(No.61132002,61231011)
文摘The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.
基金Shanxi Provincial Science and Technology Research Fund(No.2012021013-6)
文摘Satellite signal simulator for global navigation satellite system(GNSS)can evaluate the accuracy of capturing,tracing and positioning of GNSS receiver.It has significant use-value in the military and civil fields.The system adopts the overall design scheme of digital signal processor(DSP)and field-programmable gate array(FPGA).It consists of four modules:industrial control computer simulation software,mid-frequency signal generator,digital-to-analog(D/A)module and radio frequency(RF)module.In this paper,we test the dynamic performance of simulator using the dynamic scenes testing method,and the signal generated by the designed simulator is primarily validated.
基金supported by the National Natural Science Foundation of China(62103104)the Natural Science Foundation of Jiangsu Province(BK20210215)the China Postdoctoral Science Foundation(2021M690615).
文摘In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.
基金partially sponsored by the National 973 Project of China(2013CB733303)partially supported by the postgraduate independent exploration project of Central South University(2014zzts249)
文摘Selecting the optimal reference satellite is an important component of high-precision relat/ve positioning because the reference satellite directly influences the strength of the normal equation. The reference satellite selection methods based on elevation and positional dilution of precision (PDOP) value were compared. Results show that all the above methods cannot select the optimal reference satellite. We introduce condition number of the design matrix in the reference satellite selection method to improve structure of the normal equation, because condition number can indicate the ill condition of the normal equation. The experimental results show that the new method can improve positioning accuracy and reliability in precise relative positioning.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金the National Natural Science Funds of China[grant numbers 41874030,42074026]Natural Science Funds of Shanghai[grant number 21ZR1465600]+3 种基金the Program of Shanghai Academic Research Leader[grant number 20XD1423800]the Innovation Program of Shanghai Municipal Education Commission[grant number 2021-01-07-00-07-E00095]the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission[grant number 20SG18]the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee[grant numbers 20511103302,20511103402 and 20511103702].
文摘With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.
基金supported by the National Natural Science Foundation of China(62273195).
文摘In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in the signals across different incident directions,resulting in distinct CNR variations for each signal.A model is developed to calculate the variation value of the signal CNR based on the antenna gain pattern.This model enables the differentiation of the variation values of the CNR for authentic satellite signals and spoofing signals,thereby facilitating spoofing detection.The proposed method is capable of detecting spoofing signals with power and CNR similar to those of authentic satellite signals.The accuracy of the signal CNR variation value calculation model and the effectiveness of the spoofing detection method are verified through a series of experiments.In addition,the proposed spoofing detection method works not only for a single spoofing source but also for distributed spoofing sources.
基金Supported by the National Natural Science Foundation of China(41075081)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106008 and GYHY201206007)
文摘This paper presents the design of an observation operator for assimilation of global navigation satellite system(GNSS) radio occultation(RO) refractivity and the related operational implementation strategy in the global GRAPES variational data assimilation system.A preliminary assessment of the RO data assimilation effect is performed.The results show that the RO data are one of the most important observation types in GRAPES,as they have a significant positive impact on the analysis and forecast at all ranges,especially in the Southern Hemisphere and the global stratosphere where in-situ measurements are lacking.The GRAPES model error cannot be controlled in the Southern Hemisphere without RO data being assimilated.In addition,it is found that the RO data play a key role in the stable running of the GRAPES global assimilation and forecast system.Even in a relatively simple global data assimilation experiment,in which only the conventional and RO data are assimilated,the system is able to run for more than nine months without drift compared with NCEP analyses.The analysis skills in both the Northern and Southern Hemispheres are still relatively comparable even after nine-month integration,especially in the stratosphere where the number of conventional observations decreases and RO observations with a uniform global coverage dominate gradually.
基金the National High Technology Research and Development Program (863) of China(No.2009AA12Z322)
文摘When an aircraft moves under a low carrier-to-noise ratio (CNR) or at a high speed, increasing the sensitivity of global navigation satellite system (GNSS) receiver is a goal quite hard to achieve. A novel acquisition scheme assisted with micro-electro-mechanical-sensor (MEMS) inertial navigation system (INS) is presented to estimate the Doppler caused by user dynamics relative to each satellite ahead of time. Based on tightly coupled GNSS/INS estimation algorithm, MEMS INS Doppler error that can be achieved is first described. Then, by analyzing the mean acquisition time and signal detection probability, the MEMS INS-assisted acquisition capabilities in cold, warm and hot starts are quantitatively determined and compared with the standard GNSS acquisition capability. The simulations and comparisons have shown that: the acquisition time in cold start can be shortened by at least 23 s, the time in warm start can be shortened to i s and the acquisition capability is improved 95%, and the reaequisition time in hot start can be shortened by around 0.090 s and the capability can be enhanced 40%. The results demonstrate the validity of the novel method.
基金supported by the European Space Agency’s Navigation Science Office through the NAVISP Element 1 Program in the CAMALIOT(Application of Machine Learning Technology for GNSS IoT Data Fusion)project(NAVISP-EL1-038.2).
文摘Raw observations(carrier-phase and code observations)from the Global Navigation Satellite System(GNSS)can now be accessed from Android mobile phones(Version 7.0 onwards).This paves the way for GNSS data to be utilized for low-cost precise positioning or in ionospheric or tropospheric applications.This paper presents results from data collection campaigns using the CAMALIOT mobile app.In the frst campaign,116.3 billion measurements from 11,828 mobile devices were collected from all continents.Although participation decreased during the second campaign,data are still being collected globally.In this contribution,we demonstrate the potential of volunteered geographic information(VGl)from mobile phones to fill data gaps in geodetic station networks that collect GNSS data,e.g.in Brazil,but also how the data can provide a denser set of observations than current networks in countries across Europe.We also show that mobile phones capable of dual-frequency reception,which is an emerging technology that can provide a richer source of GNSS data,are contributing in a substantial way.Finally,we present the results from a survey of participants to indicate that participation is diverse in terms of backgrounds and geography,where the dominant motivation for participation is to contribute to scientific research.
基金The National Natural Science Foundation of China(No.61271214,61471152)the Postdoctoral Science Foundation of Jiangsu Province(No.1402023C)the Natural Science Foundation of Zhejiang Province(No.LZ14F010003)
文摘In order to solve the problem that the global navigation satellite system(GNSS) receivers can hardly detect the GNSS spoofing when they are deceived by a spoofer,a model-based approach for the identification of the GNSS spoofing is proposed.First,a Hammerstein model is applied to model the spoofer/GNSS transmitter and the wireless channel.Then,a novel method based on the uncultivated wolf pack algorithm(UWPA) is proposed to estimate the model parameters.Taking the estimated model parameters as a feature vector,the identification of the spoofing is realized by comparing the Euclidean distance between the feature vectors.Simulations verify the effectiveness and the robustness of the proposed method.The results show that,compared with the other identification algorithms,such as least square(LS),the iterative method and the bat-inspired algorithm(BA),although the UWPA has a little more time-eomplexity than the LS and the BA algorithm,it has better estimation precision of the model parameters and higher identification rate of the GNSS spoofing,even for relative low signal-to-noise ratios.
基金We would like to acknowledge the efforts of the MGEX station operators,data,and analysis centers,as well as the ILRS for providing SLR normal points.
文摘The analysis centers of the Multi-GNSS Pilot Project of the International GNSS Service provide orbit and clock products for the global navigation satellite systems(GNSSs)Global Positioning System(GPS),GLONASS,Galileo,and BeiDou,as well as for the Japanese regional Quasi-Zenith Satellite System(QZSS).Due to improved solar radiation pressure modeling and other more sophisticated models,the consistency of these products has improved in recent years.The current orbit consistency between different analysis centers is on the level of a few centimeters for GPS,around one decimeter for GLONASS and Galileo,a few decimeters for BeiDou-2,and several decimeters for QZSS.The clock consistency is about 2 cm for GPS,5 cm for GLONASS and Galileo,and 10 cm for BeiDou-2.In terms of carrier phase modeling error for precise point positioning,the various products exhibit consistencies of 2–3 cm for GPS,6–14 cm for GLONASS,3–10 cm for Galileo,and 10–17 cm for BeiDou-2.
基金The National Natural Science Foundation of China under contract No.41371355the Director Fund Project of Institute of Remote Sensing and Digital Earth of CAS under contract No.Y6SJ0600CX
文摘Reflected signals from global navigation satellite systems(GNSSs) have been widely acknowledged as an important remote sensing tool for retrieving sea surface wind speeds.The power of GNSS reflectometry(GNSS-R)signals can be mapped in delay chips and Doppler frequency space to generate delay Doppler power maps(DDMs),whose characteristics are related to sea surface roughness and can be used to retrieve wind speeds.However,the bistatic radar cross section(BRCS),which is strongly related to the sea surface roughness,is extensively used in radar.Therefore,a bistatic radar cross section(BRCS) map with a modified BRCS equation in a GNSS-R application is introduced.On the BRCS map,three observables are proposed to represent the sea surface roughness to establish a relationship with the sea surface wind speed.Airborne Hurricane Dennis(2005) GNSS-R data are then used.More than 16 000 BRCS maps are generated to establish GMFs of the three observables.Finally,the proposed model and classic one-dimensional delay waveform(DW) matching methods are compared,and the proposed model demonstrates a better performance for the high wind speed retrievals.
基金financially supported by the Special Fund for Meteorological Scientific Research in the Public Interest(GYHY201406012)the National Natural Science Foundation of China(41275114)a construction fund for CMONOC
文摘In this study, the Global Navigation Satellite System (GNSS) network of China is discussed, which can be used to monitor atmospheric precipitable water vapor (PWV). By the end of 2013, the network had 952 GNSS sites, including 260 belonging to the Crustal Movement Observation Network of China (CMONOC) and 692 belonging to the China Meteorological Administration GNSS network (CMAGN). Additionally, GNSS observation collecting and data processing procedures are presented and PWV data quality control methods are investigated. PWV levels as determined by GNSS and radiosonde are compared. The results show that GNSS estimates are generally in good agreement with measurements of radio- sondes and water vapor radiometers (WVR). The PWV retrieved by the national GNSS network is used in weather forecasting, assimilation of data into numerical weather prediction models, the validation of PWV estimates by radiosonde, and plum rain monitoring. The network is also used to monitor the total ionospheric electron content.