With the development of numerical weather prediction technology, the traditional global hydrostatic models used in many countries of the world for operational weather forecasting and numerical simulations of general c...With the development of numerical weather prediction technology, the traditional global hydrostatic models used in many countries of the world for operational weather forecasting and numerical simulations of general circulation have become more and more unfit for high-impact weather prediction. To address this, it is important to invest in the development of global nonhydrostatic models. Few existing nonhydrostatic global models use consistently the grid finite difference scheme for the primitive equations of dynamical cores, which can subsequently degrade the accuracy of the calculations. A new nonhydrostatic global spectral model, which utilizes the Eulerian spectral method, is developed here from NCAR Community Atmosphere Model 3.0 (CAM3.0). Using Janjic's hydrostatic/nonhydrostatic method, a global nonhydrostatic spectral method for the primitive equations has been formulated and developed. In order to retain the integrity of the nonhydrostatic equations, the atmospheric curvature correction and eccentricity correction are considered. In this paper, the Held-Suarez idealized test and an idealized baroclinic wave test are first carried out, which shows that the nonhydrostatic global spectral model has similar climate states to the results of many other global models for long-term idealized integration, as well as better simulation ability for short-term idealized integration. Then, a real case experiment is conducted using the new dynamical core with the full physical parameterizations of subgrid-scale physical processes. The 10-day numerical integration indicates a decrease in systematic error and a better simulation of zonal wind, temperature, and 500-hPa height.展开更多
There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic...There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.展开更多
Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale ...Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale anomaly takes place which is of remarkable seasonality and interannual variability.Analysis also shows that for the same seasonal external forcing the model atmosphere can exhibit two climatic states,similar in the departure pattern but opposite in sign, indicating that the anomaly is but the manifestation of the adverse states, which supports the theory of multi-equilibria proposed by Charney and Devore(1979) once again.Finally, the source for the low-frequency oscillation of the global atmosphere is found to be the convective heat source / sink inside the tropical atmosphere as discussed before in our study.Therefore, the key approach to the exploration of atmospheric steady low-frequency oscillation and the associated climatic effect lies in the examination of the distribution of convective heat sources / sinks and the variation in the tropical atmosphere.展开更多
In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R4...In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R40 model and the simple atmospheric model is the atmospheric component of the Cane-Zebiak coupled ocean-atmosphere model.The results show that the wind stress anomalies simulated by both the COLA R40 and the simple model have captured the main features of observation but the x component in the CZ model is closer to that in observation than that in the COLA model, and the correlation coefficients between simulated SSTA from the CZ model and observed for Nino indices are higher than those from the COLA model.展开更多
So far, energetics studies related to climate change have focused on the disturbed and undisturbed kinetic and potential energies, as well as their transformations, without dealing with the energetics involved in the ...So far, energetics studies related to climate change have focused on the disturbed and undisturbed kinetic and potential energies, as well as their transformations, without dealing with the energetics involved in the phenomena of different spatial scales. Thus, the present work reports the first analysis of the spectral energetics for a condition of climate change, followed by the high-range emission scenario, RCP8.5, which originated from the new Max Planck Institute Earth System Model (MPI-ESM). The results showed that both types of generation (Go and Gn), baroclinic processes (Co and Cn), kinetic energies (Ko and Kn) and the barotropic process, Mn, significantly increase in the condition of a warming climate. Moreover, the results still reveal that in the most components of the energetics, is the planetary scale waves that are the most impacted under a climate change scenario. These results highlight that global warming can have different impacts on particular types of motions.展开更多
A three-dimensional(3D)global adiabatic spectral primitive equation model has been designed.The main features are as follows. (1)Adoption of spherical harmonics and Tschebyscheff polynomials as the basis functions in ...A three-dimensional(3D)global adiabatic spectral primitive equation model has been designed.The main features are as follows. (1)Adoption of spherical harmonics and Tschebyscheff polynomials as the basis functions in the horizontal and vertical respectively,but the unknowns in the spectral equations are two- dimensional; (2)Inclusion of the tropopause,which may vary with time and space; (3)Suggestion of a spectral method for representing the vertical structure of the atmosphere applicable to the unsmoothed profile case; (4)In consideration of nonlinear vertical aliasing a technique is proposed to avoid it and nonlinear computational instability. Based on real data forecasts up to 48 hours have been performed.The results show that the statistical verifications with the model are superior on the average to those with the T42L9 used operationally before 1995 at NMC of China at the same mean resolution.展开更多
In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discreti...In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of second week of the integration and exceed one half of the total amount four weeks afterwards.In contrast,by realizing a total energy conserving semi-implicit fidelity scheme and thereby eliminating corresponding type Z errors, roughly an average of one-fourth of the RMS errors in the traditional forecast cases can be reduced at the end of second week of the integration,and averagely more than one-third reduced at integral time of four weeks afterwards.In addition,experiment results also reveal that,in a sense,the effects of type Z errors are no less great than that of the real topographic forcing of the model.The prospects of the new type of total energy conserving fidelity schemes are very encouraging.展开更多
A series of 96-h typhoon track prediction experiments were carried out using medium range forecasting system of NMC by adding BOGUS typhoon (simplified as B-TC) into the first guess field or the analysis field in orde...A series of 96-h typhoon track prediction experiments were carried out using medium range forecasting system of NMC by adding BOGUS typhoon (simplified as B-TC) into the first guess field or the analysis field in order to provide longer time typhoon track forecast. The results show that T106L19 could provide a better forecast to typhoon tracks when the B-TC was added, especially when the typhoon vortex is even weaker. The sensitive experiments on where to add the B-TC show that the results from adding the B-TC into the first guess field are better. The results also show that the initialization smoothes the B-TC a lot and this will affect the typhoon track prediction.展开更多
基金supported by the China Meteorological Administration Special Fund for numerical prediction(GRAPES)the National Natural Science Foundation of China(Grant Nos.40775067)
文摘With the development of numerical weather prediction technology, the traditional global hydrostatic models used in many countries of the world for operational weather forecasting and numerical simulations of general circulation have become more and more unfit for high-impact weather prediction. To address this, it is important to invest in the development of global nonhydrostatic models. Few existing nonhydrostatic global models use consistently the grid finite difference scheme for the primitive equations of dynamical cores, which can subsequently degrade the accuracy of the calculations. A new nonhydrostatic global spectral model, which utilizes the Eulerian spectral method, is developed here from NCAR Community Atmosphere Model 3.0 (CAM3.0). Using Janjic's hydrostatic/nonhydrostatic method, a global nonhydrostatic spectral method for the primitive equations has been formulated and developed. In order to retain the integrity of the nonhydrostatic equations, the atmospheric curvature correction and eccentricity correction are considered. In this paper, the Held-Suarez idealized test and an idealized baroclinic wave test are first carried out, which shows that the nonhydrostatic global spectral model has similar climate states to the results of many other global models for long-term idealized integration, as well as better simulation ability for short-term idealized integration. Then, a real case experiment is conducted using the new dynamical core with the full physical parameterizations of subgrid-scale physical processes. The 10-day numerical integration indicates a decrease in systematic error and a better simulation of zonal wind, temperature, and 500-hPa height.
文摘There are two important features in geophysical fluid dynamics. One is that the atmospheric and oceanic equations of motion include the Coriolis force; another is that they describe a stratified fluid. The hydrostatic extraction scheme, or standard stratification approximation, posed by Zeng (1979), reflects the second aspect of geophysical fluid dynamics. There exist two major advantages in this scheme; accurate computation of the pressure gradient force can be obtained over steep mountain slopes, and the accumulation error in vertical finite differencing can be reduced, especially near the tropopause.Chen et al (1987) introduced the hydrostatic extraction scheme into a global spectral model, which attained preliminary success at low resolution. Zhang and Sheng et al (1990) developed and improved the hydrostatic extraction scheme in a global spectral model, in which C0, the parameter that represents the stratification of the reference atmosphere, changes not only with height, but also with latitude. The scheme has been incorporated BMRC's global spectral model (IAPB). Four 5-day forecasts have been performed to test the IAPB with the hydrostatic extraction scheme. Objective verifications demonstrate a positive effect of the hydrostatic extration scheme on BMRC's model, particularly at upper levels, over the tropics and the Antartic region.
文摘Analysis is done of five-year low-pass filtered data by a five-layer low-order global spectral model, indicating that although any non-seasonal external forcing is not considered in the model atmosphere,monthly-scale anomaly takes place which is of remarkable seasonality and interannual variability.Analysis also shows that for the same seasonal external forcing the model atmosphere can exhibit two climatic states,similar in the departure pattern but opposite in sign, indicating that the anomaly is but the manifestation of the adverse states, which supports the theory of multi-equilibria proposed by Charney and Devore(1979) once again.Finally, the source for the low-frequency oscillation of the global atmosphere is found to be the convective heat source / sink inside the tropical atmosphere as discussed before in our study.Therefore, the key approach to the exploration of atmospheric steady low-frequency oscillation and the associated climatic effect lies in the examination of the distribution of convective heat sources / sinks and the variation in the tropical atmosphere.
文摘In this paper, surface wind stress anomalies over the tropical Pacific simulated by an AGCM and by a simple atmospheric model are compared with observed. The AGCM is the higher resolution global spectral model-COLA R40 model and the simple atmospheric model is the atmospheric component of the Cane-Zebiak coupled ocean-atmosphere model.The results show that the wind stress anomalies simulated by both the COLA R40 and the simple model have captured the main features of observation but the x component in the CZ model is closer to that in observation than that in the COLA model, and the correlation coefficients between simulated SSTA from the CZ model and observed for Nino indices are higher than those from the COLA model.
文摘So far, energetics studies related to climate change have focused on the disturbed and undisturbed kinetic and potential energies, as well as their transformations, without dealing with the energetics involved in the phenomena of different spatial scales. Thus, the present work reports the first analysis of the spectral energetics for a condition of climate change, followed by the high-range emission scenario, RCP8.5, which originated from the new Max Planck Institute Earth System Model (MPI-ESM). The results showed that both types of generation (Go and Gn), baroclinic processes (Co and Cn), kinetic energies (Ko and Kn) and the barotropic process, Mn, significantly increase in the condition of a warming climate. Moreover, the results still reveal that in the most components of the energetics, is the planetary scale waves that are the most impacted under a climate change scenario. These results highlight that global warming can have different impacts on particular types of motions.
基金This study is supported by the National Natural Science Foundation of China under the program No.49575268.
文摘A three-dimensional(3D)global adiabatic spectral primitive equation model has been designed.The main features are as follows. (1)Adoption of spherical harmonics and Tschebyscheff polynomials as the basis functions in the horizontal and vertical respectively,but the unknowns in the spectral equations are two- dimensional; (2)Inclusion of the tropopause,which may vary with time and space; (3)Suggestion of a spectral method for representing the vertical structure of the atmosphere applicable to the unsmoothed profile case; (4)In consideration of nonlinear vertical aliasing a technique is proposed to avoid it and nonlinear computational instability. Based on real data forecasts up to 48 hours have been performed.The results show that the statistical verifications with the model are superior on the average to those with the T42L9 used operationally before 1995 at NMC of China at the same mean resolution.
基金The work is supported by the National Natural Science Foundation of China(49675267).
文摘In this paper,two formulation theorems of time-difference fidelity schemes for general quadratic and cubic physical conservation laws are respectively constructed and proved,with earlier major conserving time-discretized schemes given as special cases.These two theorems can provide new mathematical basis for solving basic formulation problems of more types of conservative time- discrete fidelity schemes,and even for formulating conservative temporal-spatial discrete fidelity schemes by combining existing instantly conserving space-discretized schemes.Besides.the two theorems can also solve two large categories of problems about linear and nonlinear computational instability. The traditional global spectral-vertical finite-difference semi-implicit model for baroclinic primitive equations is currently used in many countries in the world for operational weather forecast and numerical simulations of general circulation.The present work,however,based on Theorem 2 formulated in this paper,develops and realizes a high-order total energy conserving semi-implicit time-difference fidelity scheme for global spectral-vertical finite-difference model of baroclinic primitive equations.Prior to this,such a basic formulation problem remains unsolved for long,whether in terms of theory or practice.The total energy conserving semi-implicit scheme formulated here is applicable to real data long-term numerical integration. The experiment of thirteen FGGE data 30-day numerical integration indicates that the new type of total energy conserving semi-implicit fidelity scheme can surely modify the systematic deviation of energy and mass conserving of the traditional scheme.It should be particularly noted that,under the experiment conditions of the present work,the systematic errors induced by the violation of physical laws of conservation in the time-discretized process regarding the traditional scheme designs(called type Z errors for short)can contribute up to one-third of the total systematic root-mean-square(RMS)error at the end of second week of the integration and exceed one half of the total amount four weeks afterwards.In contrast,by realizing a total energy conserving semi-implicit fidelity scheme and thereby eliminating corresponding type Z errors, roughly an average of one-fourth of the RMS errors in the traditional forecast cases can be reduced at the end of second week of the integration,and averagely more than one-third reduced at integral time of four weeks afterwards.In addition,experiment results also reveal that,in a sense,the effects of type Z errors are no less great than that of the real topographic forcing of the model.The prospects of the new type of total energy conserving fidelity schemes are very encouraging.
基金Key scientific research project for the State Meteorological Administration in the 9 five-year development plan (ZX95-01)
文摘A series of 96-h typhoon track prediction experiments were carried out using medium range forecasting system of NMC by adding BOGUS typhoon (simplified as B-TC) into the first guess field or the analysis field in order to provide longer time typhoon track forecast. The results show that T106L19 could provide a better forecast to typhoon tracks when the B-TC was added, especially when the typhoon vortex is even weaker. The sensitive experiments on where to add the B-TC show that the results from adding the B-TC into the first guess field are better. The results also show that the initialization smoothes the B-TC a lot and this will affect the typhoon track prediction.