Aiming at the group of autonomous agents consisting of multiple leader agents and multiple follower ones,a flocking behavior method with multiple leaders and a global trajectory was proposed.In this flocking method,th...Aiming at the group of autonomous agents consisting of multiple leader agents and multiple follower ones,a flocking behavior method with multiple leaders and a global trajectory was proposed.In this flocking method,the group leaders can attain the information of the global trajectory,while each follower can communicate with its neighbors and corresponding leader but does not have global knowledge.Being to a distributed control method,the proposed method firstly sets a movable imaginary point on the global trajectory to ensure that the center and average velocity of the leader agents satisfy the constraints of the global trajectory.Secondly,a two-stage strategy was proposed to make the whole group satisfy the constraints of the global trajectory.Moreover,the distance between the center of the group and the desired trajectory was analyzed in detail according to the number ratio of the followers to the leaders.In this way,on one hand,the agents of the group emerge a basic flocking behavior; on the other hand,the center of the group satisfies the constraints of global trajectory.Simulation results demonstrate the effectiveness of the proposed method.展开更多
Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a ...Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a celestial body. Some optimal trajectories ofEJS, EMS, EVEJS and EVVEJS flying sequences are obtained using five global optimization algorithms: DE, PSO, DP, the hybrid algorithm PSODE and another hybrid algorithm, DPDE. DE is proved to be supe- rior to other non-hybrid algorithms in the trajectory optimi- zation problem. The hybrid algorithm of PSO and DE can improve the optimization performance of DE, which is vali- dated by the mission to Saturn with given swingby sequences. Finally, the optimization results of four different swingby sequences are compared with those of the ACT of ESA.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
In 2005, world economic growth decelerated modestly in contrast to the robust performance of the previous year, due to repeated spikes in oil prices and a battery of interest rate hikes by the U.S. Federal Reserve.
We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajecto...We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajectory generation algorithm,and trajectory tracking controller design.A lattice planner,which searches over a 3D(x,y,θ) configuration space,is adopted to generate the global trajectory.The ILQR method is used to design a local trajectory tracking controller.The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot.The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator(LQR) method.According to the experiments,the new controller improves the control sequences(v,ω) iteratively and produces slightly better results.Specifically,two trajectories,'S' and '8' courses,are followed with sufficient accuracy using the proposed controller.展开更多
The 8th edition of the Global Trajectory Optimization Competition(GTOC8)presented a novel concept of a space-based very-long-baseline interferometry(VLBI)telescope in cislunar space for observing selected radio source...The 8th edition of the Global Trajectory Optimization Competition(GTOC8)presented a novel concept of a space-based very-long-baseline interferometry(VLBI)telescope in cislunar space for observing selected radio sources in cosmos.It requires designing a three-spacecraft triangular formation with changeable sizes and orientations such that observation can be scheduled as efficiently as possible.We first review the problem,and then describe the methods employed by representative teams participating in the competition.Subsequently,we present the design techniques employed by the team from the Chinese Academy of Sciences,which are primarily based on orbital-geometry analysis.Two efficient trajectory patterns are summarized:million-kilometer triangular formations with symmetric circular orbits,and consecutive-lunar-flyby trajectories with Moon-to-Moon transfer orbits.These two trajectory patterns enable establishing and reconfiguring the triangular formation with sufficiently different sizes so that a number of radio sources can be observed,thus maximizing the performance index.Finally,we present a solution with the best currently known score of J=158 million km.展开更多
基金Projects(61170160,61202338)supported by the National Natural Science Foundation of China
文摘Aiming at the group of autonomous agents consisting of multiple leader agents and multiple follower ones,a flocking behavior method with multiple leaders and a global trajectory was proposed.In this flocking method,the group leaders can attain the information of the global trajectory,while each follower can communicate with its neighbors and corresponding leader but does not have global knowledge.Being to a distributed control method,the proposed method firstly sets a movable imaginary point on the global trajectory to ensure that the center and average velocity of the leader agents satisfy the constraints of the global trajectory.Secondly,a two-stage strategy was proposed to make the whole group satisfy the constraints of the global trajectory.Moreover,the distance between the center of the group and the desired trajectory was analyzed in detail according to the number ratio of the followers to the leaders.In this way,on one hand,the agents of the group emerge a basic flocking behavior; on the other hand,the center of the group satisfies the constraints of global trajectory.Simulation results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (10832004 and 10672084).
文摘Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a celestial body. Some optimal trajectories ofEJS, EMS, EVEJS and EVVEJS flying sequences are obtained using five global optimization algorithms: DE, PSO, DP, the hybrid algorithm PSODE and another hybrid algorithm, DPDE. DE is proved to be supe- rior to other non-hybrid algorithms in the trajectory optimi- zation problem. The hybrid algorithm of PSO and DE can improve the optimization performance of DE, which is vali- dated by the mission to Saturn with given swingby sequences. Finally, the optimization results of four different swingby sequences are compared with those of the ACT of ESA.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.
文摘In 2005, world economic growth decelerated modestly in contrast to the robust performance of the previous year, due to repeated spikes in oil prices and a battery of interest rate hikes by the U.S. Federal Reserve.
基金Project (Nos. 90920304 and 91120015) supported by the National Natural Science Foundation of China
文摘We present an iterative linear quadratic regulator(ILQR) method for trajectory tracking control of a wheeled mobile robot system.The proposed scheme involves a kinematic model linearization technique,a global trajectory generation algorithm,and trajectory tracking controller design.A lattice planner,which searches over a 3D(x,y,θ) configuration space,is adopted to generate the global trajectory.The ILQR method is used to design a local trajectory tracking controller.The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot.The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator(LQR) method.According to the experiments,the new controller improves the control sequences(v,ω) iteratively and produces slightly better results.Specifically,two trajectories,'S' and '8' courses,are followed with sufficient accuracy using the proposed controller.
基金supported by the National Natural Science Foundation of China(No.11372311)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-KT-2019-1).
文摘The 8th edition of the Global Trajectory Optimization Competition(GTOC8)presented a novel concept of a space-based very-long-baseline interferometry(VLBI)telescope in cislunar space for observing selected radio sources in cosmos.It requires designing a three-spacecraft triangular formation with changeable sizes and orientations such that observation can be scheduled as efficiently as possible.We first review the problem,and then describe the methods employed by representative teams participating in the competition.Subsequently,we present the design techniques employed by the team from the Chinese Academy of Sciences,which are primarily based on orbital-geometry analysis.Two efficient trajectory patterns are summarized:million-kilometer triangular formations with symmetric circular orbits,and consecutive-lunar-flyby trajectories with Moon-to-Moon transfer orbits.These two trajectory patterns enable establishing and reconfiguring the triangular formation with sufficiently different sizes so that a number of radio sources can be observed,thus maximizing the performance index.Finally,we present a solution with the best currently known score of J=158 million km.