It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles an...It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles and subsets of (N - 1)- dimensional hyperplanes.展开更多
Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the i...Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the inverse problem of determining the shape of the open cavity from the information of the measured scattered field. Results on the uniqueness and the local stability of the inverse problem in the 2-dimensional TM (transverse magnetic) polarization are proved in this paper.展开更多
This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regul...This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regularizations perform better in the sense of edge preserving. While anisotropic TV regularization will cause distortions along axes. To minimize the energy function with isotropic and anisotropic regularization terms, we use split Bregman scheme. We do several 2D numerical experiments to validate the above arguments.展开更多
The analytic properties of the scattering amplitude are discussed, and a representation of the potential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy problem solution for the Nav...The analytic properties of the scattering amplitude are discussed, and a representation of the potential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. The paper also describes the time blowup of classical solutions for the Navier-Stokes equations by the smoothness assumption.展开更多
In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., Cambridge. A new uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. We ...In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., Cambridge. A new uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. We also describe the loss of smoothness of classical solutions for the Navier-Stokes equations.展开更多
A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solvi...A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solving independently an ill-posed linear system and a well-posed minimization problem.Such a separate numerical treatment for the ill-posedness and nonlinearity of the inverse problem makes the numerical implementation of the proposed method very easy and fast since there only involves the solution of a small scale minimization problem with one unknown function in the nonlinear optimization step for determining the shape of the sound-hard obstacle.Another particular feature of the method is that it can reproduce the shape of an unknown hard target efficiently from the knowledge of only one Fourier coefficient of the far-field pattern.Moreover,a two-step adaptive iteration algorithm was presented to implement numerically the nonlinear optimization scheme.Numerical experiments for several two-dimensional sound-hard scatterers having a variety of shapes provide an independent verification of the effectiveness and practicality of the inversion scheme.展开更多
文摘It is proved that a sound-soft scatterer in R^N (N = 2, 3) is uniquely determined by a finite number of acoustic far-field measurements. The admissible scatterer possibly consists of finitely many solid obstacles and subsets of (N - 1)- dimensional hyperplanes.
基金supported partly by the“973"Project of the Major State Basic Research(G1999032802)the National Natural Science Foundation of China(Grant No.10431030).
文摘Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the inverse problem of determining the shape of the open cavity from the information of the measured scattered field. Results on the uniqueness and the local stability of the inverse problem in the 2-dimensional TM (transverse magnetic) polarization are proved in this paper.
文摘This article compares the isotropic and anisotropic TV regularizations used in inverse acoustic scattering. It is observed that compared with the traditional Tikhonov regularization, isotropic and anisotropic TV regularizations perform better in the sense of edge preserving. While anisotropic TV regularization will cause distortions along axes. To minimize the energy function with isotropic and anisotropic regularization terms, we use split Bregman scheme. We do several 2D numerical experiments to validate the above arguments.
基金the Ministry of Education and Science of the Republic of Kazakhstan for a grant
文摘The analytic properties of the scattering amplitude are discussed, and a representation of the potential is obtained using the scattering amplitude. A uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. The paper also describes the time blowup of classical solutions for the Navier-Stokes equations by the smoothness assumption.
基金the Ministry of Education and Science of the Republic of Kazakhstan for a grant
文摘In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., Cambridge. A new uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. We also describe the loss of smoothness of classical solutions for the Navier-Stokes equations.
文摘A nonlinear optimization method was developed to solve the inverse problem of determining the shape of a hard target from the knowlegde of the far-field pattern of the acoustic scattering wave,it was achieved by solving independently an ill-posed linear system and a well-posed minimization problem.Such a separate numerical treatment for the ill-posedness and nonlinearity of the inverse problem makes the numerical implementation of the proposed method very easy and fast since there only involves the solution of a small scale minimization problem with one unknown function in the nonlinear optimization step for determining the shape of the sound-hard obstacle.Another particular feature of the method is that it can reproduce the shape of an unknown hard target efficiently from the knowledge of only one Fourier coefficient of the far-field pattern.Moreover,a two-step adaptive iteration algorithm was presented to implement numerically the nonlinear optimization scheme.Numerical experiments for several two-dimensional sound-hard scatterers having a variety of shapes provide an independent verification of the effectiveness and practicality of the inversion scheme.