Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in da...Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating informa...Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.展开更多
Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance de...Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.展开更多
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi...Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.展开更多
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring st...For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor anal...In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.展开更多
A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), e...A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.展开更多
To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) ...To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.展开更多
There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it de...There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach.展开更多
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ...The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy sev...In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy several row rank preserving conditions,we derive a new perturbation bound of the projection.展开更多
基金Supported by the National Natural Science Foundation of China (60973097)the Scientific Research Foundation of Liaocheng University(X0810029)~~
文摘Locality preserving projection (LPP) is a typical and popular dimensionality reduction (DR) method,and it can potentially find discriminative projection directions by preserving the local geometric structure in data. However,LPP is based on the neighborhood graph artificially constructed from the original data,and the performance of LPP relies on how well the nearest neighbor criterion work in the original space. To address this issue,a novel DR algorithm,called the self-dependent LPP (sdLPP) is proposed. And it is based on the fact that the nearest neighbor criterion usually achieves better performance in LPP transformed space than that in the original space. Firstly,LPP is performed based on the typical neighborhood graph; then,a new neighborhood graph is constructed in LPP transformed space and repeats LPP. Furthermore,a new criterion,called the improved Laplacian score,is developed as an empirical reference for the discriminative power and the iterative termination. Finally,the feasibility and the effectiveness of the method are verified by several publicly available UCI and face data sets with promising results.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金Supported by the National Natural Science Foundation of China(11076015)the Shandong Provincial Natural Science Foundation(ZR2010FL011)the Scientific Foundation of Liaocheng University(X10010)~~
文摘Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China (61273160), the Natural Science Foundation of Shandong Province of China (ZR2011FM014) and the Fundamental Research Funds for the Central Universities (10CX04046A).
文摘Locality preserving projection (LPP) is a newly emerging fault detection method which can discover local manifold structure of a data set to be analyzed, but its linear assumption may lead to monitoring performance degradation for complicated nonlinear industrial processes. In this paper, an improved LPP method, referred to as sparse kernel locality preserving projection (SKLPP) is proposed for nonlinear process fault detection. Based on the LPP model, kernel trick is applied to construct nonlinear kernel model. Furthermore, for reducing the computational complexity of kernel model, feature samples selection technique is adopted to make the kernel LPP model sparse. Lastly, two monitoring statistics of SKLPP model are built to detect process faults. Simulations on a continuous stirred tank reactor (CSTR) system show that SKLPP is more effective than LPP in terms of fault detection performance.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. CDJZR10118801)
文摘Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project (B054)
文摘For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
文摘In this paper, a manifold subspace learning algorithm based on locality preserving discriminant projection (LPDP) is used for speaker verification. LPDP can overcome the deficiency of the total variability factor analysis and locality preserving projection (LPP). LPDP can effectively use the speaker label information of speech data. Through optimization, LPDP can maintain the inherent manifold local structure of the speech data samples of the same speaker by reducing the distance between them. At the same time, LPDP can enhance the discriminability of the embedding space by expanding the distance between the speech data samples of different speakers. The proposed method is compared with LPP and total variability factor analysis on the NIST SRE 2010 telephone-telephone core condition. The experimental results indicate that the proposed LPDP can overcome the deficiency of LPP and total variability factor analysis and can further improve the system performance.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A novel supervised manifold learning method was proposed to realize high accuracy face recognition under varying illuminant conditions. The proposed method, named illuminant locality preserving projections (ILPP), exploited illuminant directions to alleviate the effect of illumination variations on face recognition. The face images were first projected into low dimensional subspace, Then the ILPP translated the face images along specific direction to reduce lighting variations in the face. The ILPP reduced the distance between face images of the same class, while increase the dis tance between face images of different classes. This proposed method was derived from the locality preserving projections (LPP) methods, and was designed to handle face images with various illumi nations. It preserved the face image' s local structure in low dimensional subspace. The ILPP meth od was compared with LPP and discriminant locality preserving projections (DLPP), based on the YaleB face database. Experimental results showed the effectiveness of the proposed algorithm on the face recognition with various illuminations.
基金Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 11KJB510020)National Natural Science Foundation of China (No. 61171077)College Industrialization Project of Jiangsu Province,China (No. JH09-24)
文摘To separate each pattern class more strongly and deal with nonlinear ease, a new nonlinear manifold learning algorithm named supervised kernel uneorrelated diseriminant neighborhood preserving projections (SKUDNPP) is proposed. The algorithm utilizes supervised weight and kernel technique which makes the algorithm cope with classifying and nonlinear problems competently. The within-class geometric structure is preserved, while maximizing the between-class distance. And the features extracted are statistically uneorrelated by introducing an uneorrelated constraint. Experiment results on millimeter wave (MMW) radar target recognition show that the method can give competitive results in comparison with current papular algorithms.
文摘There are a variety of classification techniques such as neural network, decision tree, support vector machine and logistic regression. The problem of dimensionality is pertinent to many learning algorithms, and it denotes the drastic raise of computational complexity, however, we need to use dimensionality reduction methods. These methods include principal component analysis (PCA) and locality preserving projection (LPP). In many real-world classification problems, the local structure is more important than the global structure and dimensionality reduction techniques ignore the local structure and preserve the global structure. The objectives is to compare PCA and LPP in terms of accuracy, to develop appropriate representations of complex data by reducing the dimensions of the data and to explain the importance of using LPP with logistic regression. The results of this paper find that the proposed LPP approach provides a better representation and high accuracy than the PCA approach.
基金funded by projects of the National Natural Science Foundation of China(91955204,42241202)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK080301)a project entitled Tectonics,Sedimentation,Evolution,and Basic Petroleum Geology of the Qiangtang Basin(2021DJ0801)of the Forward-looking Basic Subjects of PetroChina’s 14th Five-Year Plan.
文摘The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
文摘In this paper we study the perturbation bound of the projection ( W A ) ( W A )+,where both the matrices A and W are given with W positive diagonal and severely stiff.When the perturbed matrix (A)= A + δA satisfy several row rank preserving conditions,we derive a new perturbation bound of the projection.