We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the glob...In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.展开更多
This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial da...This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial data N-dimensional vector value function u0(x)in Sobolev space H^(s)(R^(n))(s≥1)leads to a global weak solution.Second,we investigate some special regularity properties of solutions to the initial value problem associated with the KdV type system in R^(2)and R^(3).展开更多
The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_...The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.展开更多
We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy leve...We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy level. Then, we establish the existence of solutions blowing up in finite time with initial data at arbitrary energy level. Finally, we estimate the upper bound of the blow-up time under certain conditions.展开更多
This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Un...This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.展开更多
In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the ...In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.展开更多
This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive in...This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive initial conditions. This system describes the processes of diffusion of heat and burning in two component continuous media with nonlinear conductivity and volume energy release. We obtain the global existence and blow up results of the solution relying on comparison with carefully constructed upper solutions and lower solutions.展开更多
In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potentia...In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.展开更多
The authors prove the local existence and uniqueness of weak solution of a hyperbolic-parabolic system and establish the global existence of the weak solution for this system for the spatial dimension n = 1.
This article deals with the conditions that ensure the blow-up phenomenon or its absence for solutions of the system ut= △u^l + u^p1v^q1 and vt = △v ^m + u^p2 v^q2 with homogeneous Dirichlet boundary conditions....This article deals with the conditions that ensure the blow-up phenomenon or its absence for solutions of the system ut= △u^l + u^p1v^q1 and vt = △v ^m + u^p2 v^q2 with homogeneous Dirichlet boundary conditions. The results depend crucially on the sign of the difference p2q1 - (l -p1)(m- q2), the initial data, and the domain Ω.展开更多
We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical s...We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.展开更多
This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 ...This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.展开更多
In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically...In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular.展开更多
In this paper we consider the Elastic membrane equation:with memory term and nonlinear boundary damping: Under some appropriate assumptions on the relaxation function h and with certain initial data, the global exis...In this paper we consider the Elastic membrane equation:with memory term and nonlinear boundary damping: Under some appropriate assumptions on the relaxation function h and with certain initial data, the global existence of solutions :and a general decay for the energy are established using the multiplier technique. Also, 'we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping.展开更多
By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result o...By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.展开更多
This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multipli...This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.展开更多
Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a conv...Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a convenient null condition is satisfied by nonlinearities.展开更多
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.
文摘This paper examines the existence of weak solutions to a class of the high-order Korteweg-de Vries(KdV)system in Rn.We first prove,by the Leray-Schauder principle and the vanishing viscosity method,that any initial data N-dimensional vector value function u0(x)in Sobolev space H^(s)(R^(n))(s≥1)leads to a global weak solution.Second,we investigate some special regularity properties of solutions to the initial value problem associated with the KdV type system in R^(2)and R^(3).
文摘The Landau equation is studied for hard potential with-2≤γ≤1.Under a perturbation setting,a unique global solution of the Cauchy problem to the Landau equation is established in a critical Sobolev space H_(x)^(d)L_(v)^(2)(d>3/2),which extends the results of[11]in the torus domain to the whole space R_(x)^(3).Here we utilize the pseudo-differential calculus to derive our desired result.
基金Supported by National Natural Science Foundation of China(Grant No.11801145)the Innovative Funds Plan of Henan University of Technology(Grant No.2020ZKCJ09)。
文摘We consider the initial-boundary value problem for finitely degenerate parabolic equation. We first give sufficient conditions for the blow-up and global existence of the parabolic equation at high initial energy level. Then, we establish the existence of solutions blowing up in finite time with initial data at arbitrary energy level. Finally, we estimate the upper bound of the blow-up time under certain conditions.
文摘This paper is concerned with a modified transitional Korteweg-de Vries equation ut+f(t)u2ux+uxxx=0, (x,t)∈R+×R+with initial value u(x,0)=g(x)∈H4(R+)and inhomogeneous boundary value u(0,t)=Q(t)∈C2([ 0,∞ )). Under the conditions either 1) f(t)≤0, f′(t)≥0or 2) f(t)≤−αwhere α>0, we prove the existence of a unique global classical solution.
文摘In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.
文摘This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive initial conditions. This system describes the processes of diffusion of heat and burning in two component continuous media with nonlinear conductivity and volume energy release. We obtain the global existence and blow up results of the solution relying on comparison with carefully constructed upper solutions and lower solutions.
文摘In this paper, we consider the nonlinearly damped semi-linear wave equation associated with initial and Dirichlet boundary conditions. We prove the existence of a local weak solution and introduce a family of potential wells and discuss the invariants and vacuum isolating behavior of solutions. Furthermore, we prove the global existence of solutions in both cases which are polynomial and exponential decay in the energy space respectively, and the asymptotic behavior of solutions for the cases of potential well family with 0 〈 E(0) 〈 d. At last we show that the energy will grow up as an exponential function as time goes to infinity, provided the initial data is large enough or E(0) 〈 0.
文摘The authors prove the local existence and uniqueness of weak solution of a hyperbolic-parabolic system and establish the global existence of the weak solution for this system for the spatial dimension n = 1.
基金This work is supported in part by NNSF of China (10571126)in part by Program for New Century Excellent Talents in University.
文摘This article deals with the conditions that ensure the blow-up phenomenon or its absence for solutions of the system ut= △u^l + u^p1v^q1 and vt = △v ^m + u^p2 v^q2 with homogeneous Dirichlet boundary conditions. The results depend crucially on the sign of the difference p2q1 - (l -p1)(m- q2), the initial data, and the domain Ω.
基金supported by the National Natural Science Foundation of China(11301172,11226170)China Postdoctoral Science Foundation funded project(2012M511640)Hunan Provincial Natural Science Foundation of China(13JJ4095)
文摘We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
文摘This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.
文摘In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular.
文摘In this paper we consider the Elastic membrane equation:with memory term and nonlinear boundary damping: Under some appropriate assumptions on the relaxation function h and with certain initial data, the global existence of solutions :and a general decay for the energy are established using the multiplier technique. Also, 'we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping.
文摘By means of maximum principle for nonlinear hyperbolic systems, the results given by HSIAO Ling and D. Serre was improved for Cauchy problem of compressible adiabatic flow through porous media, and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems. These results show that the dissipation is strong enough to preserve the smoothness of ‘small ’ solution.
基金Sponsored by the NNSF of China(11031003,11271066,11326158)a grant of Shanghai Education Commission(13ZZ048)Chinese Universities Scientific Fund(CUSF-DH-D-2013068)
文摘This article is devoted to the study of global existence and exponential stability of solutions to an initial-boundary value problem of the quasilinear thermo-diffusion equations with second sound by means of multiplicative techniques and energy method provided that the initial data are close to the equilibrium and the relaxation kernel is strongly positive definite and decays exponentially.
文摘Consider quadratic quasi-linear Klein-Gordon systems with eventually different masses for small, smooth, compactly supported Cauchy data in one space dimension. It is proved that the global existence holds when a convenient null condition is satisfied by nonlinearities.