A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations...A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.展开更多
Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, ...Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab- rics. The OAUGDP is a non-thermal plasma with the classical characteristics of a DC normal glow discharge that operates in air (and other gases) at atmospheric pres- sure. Neither a vacuum system nor batch processing is necessary. A wide range of applications to metals, photoresist, films, fabrics, and polymeric webs can be accom- modated by direct exposure of the workpiece to the plasma in parallel-plate reactors. This technolopy is simple, it produces effects that can be obtained in no other way at one atmosphere; it generates minimal pollutants or unwanted by-products; and it is suitable for individual sample or online treatment of metallic surfaces, wafers, films, and fabrics. Early exposures of solid materials to the OAUGDP required minutes to produce rela- tively small increases of surface energy. These durations appeared too long for com- mercial application to fast-moving webs. Recent improvements in OAUGDP gas com- position, power density, plasma quality, recireulating gas flow, and impedance match- ing of the power supply to the parallel plate plasma reactor have made it possible to raise the surface energy of a variety of polymeric webs (PP, PET PE etc.) to levels of 60 to 70 dynes/cm with one second of exposure. In air plasmas, the high surface ener- gies are not durable, and fall to 50 dynes/cm after periods of weeks to months. Here, we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo- ven fabrics made of PP and PET to an impedance matched parallel plate OAUGDP for durations ranging from one second to several tens of seconds. Data will be re- ported on the surface energy, wettability, wickability, and aging effect of polymeric films and fabrics as functions of time of exposure, and time after exposure; the rate and uniformity of photoresist etching; and the production of sub-micron structures by OAUGDP etching at one atmosphere.展开更多
Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (...Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the展开更多
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined ...The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,展开更多
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen d...This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.展开更多
The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continui...The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.展开更多
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investiga...The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.展开更多
The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of ...The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.展开更多
We present here an investigation of the self-pulsing phenomenon of negative corona and parallel-plate discharge in argon within one frame of a one-dimensional fluid model in cylinder–cylinder electrode geometry.The t...We present here an investigation of the self-pulsing phenomenon of negative corona and parallel-plate discharge in argon within one frame of a one-dimensional fluid model in cylinder–cylinder electrode geometry.The transition from corona to parallel-plate discharge is obtained by changing the inner and outer radii of the electrodes.The model reproduces the self-pulsing waveform well and provides the spatiotemporal behaviors of the charged particles and electric field during the pulse.The self-pulsing shows a common feature that occurs in various configurations and that does not depend on a specific electrode structure.The self-pulsing is the transformation between a weak-current Townsend mode and a large-current normal glow mode.The behavior of the positive ions is the dominant factor in the formation of the pulse.展开更多
Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the ...Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the currentvoltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.展开更多
This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degr...This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.展开更多
Atmospheric cascade discharges with pulsed discharge and radio frequency(RF)discharge were experimentally investigated by the temporal evolution of discharge spatial profile and intensity.The indium tin oxide(ITO)coat...Atmospheric cascade discharges with pulsed discharge and radio frequency(RF)discharge were experimentally investigated by the temporal evolution of discharge spatial profile and intensity.The indium tin oxide(ITO)coated glass was employed as the transparent electrode to capture the discharge distribution above the electrode surface.It is demonstrated that in the pulsed discharge with dielectric barrier,the first discharge at the rising edge of pulse voltage is uniformly ignited and then forms an expanding plasma ring on the ITO electrode surface,which shrinks to the same diameter as that of bare stainless steel electrode with the generation of second discharge at the falling edge of pulse voltage.The discharge profiles along the electrode surface and discharge gap of the successive RF discharge are dependent on the intensity and spatial distribution of residual plasma species generated by the pulsed discharge,which is determined by the time interval between the pulsed discharge and RF discharge.It is demonstrated that the residual plasma species before the RF discharge ignition help to achieve the stable operation of RF discharge with elevated intensity.展开更多
In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several o...In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (co =30 mg·1-1) is completely converted within 2h at 30℃ and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.展开更多
In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results in...In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (〈2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (〉2 mm). The discharge modes in these current oscillations have also been analyzed.展开更多
Glow discharge is introduced as an artificial disturbance to investigate the evolution of first-and second-mode instabilities in a hypersonic flat plate boundary layer.Experiments are conducted in a Mach 6.5 quiet win...Glow discharge is introduced as an artificial disturbance to investigate the evolution of first-and second-mode instabilities in a hypersonic flat plate boundary layer.Experiments are conducted in a Mach 6.5 quiet wind tunnel using Rayleigh scattering visualization and particle image velocimetry(PIV). Detailed analysis of the experimental observations is provided. It is found that the artificially introduced 17 kHz disturbance,which belongs to the first-mode frequency band, can effectively enhance first-mode waves.Moreover, it can enhance second-mode waves even more intensely. Possible mechanisms to explain this phenomenon are discussed.展开更多
An atmospheric pressure glow discharge was ignited between a molybdenum anode and the water surface of a cathode for the synthesis of MoO_3 powders. The action of glow discharge leads to the non-equilibrium evaporatio...An atmospheric pressure glow discharge was ignited between a molybdenum anode and the water surface of a cathode for the synthesis of MoO_3 powders. The action of glow discharge leads to the non-equilibrium evaporation of water, sputtering of the metal anode and formation of molybdenum(VI) oxide, which deposited on the anode. The chemical composition and morphology of the obtained powder were performed by using x-ray diffraction spectroscopy,scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the synthesized powders are pure α-MoO_3. The possible mechanism of the formation of molybdenum trioxide during glow discharge treatment was described. The photocatalytic performance of MoO_3 was estimated through the degradation of Rhodamine B under dark and UV irradiation conditions. Orthorhombic MoO_3 exhibited the best photocatalytic activity for the photodegradation of Rhodamine B of 100% under UV irradiation for 15 min.展开更多
An analytical method for the determination of 26 impurity elements (such as Li, Be, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Co, Ni, Ga, Ge, Y, Nb, Mo, Ag, Cd, Sb, W and Pb) in MnZn ferrite powder by direct curre...An analytical method for the determination of 26 impurity elements (such as Li, Be, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Co, Ni, Ga, Ge, Y, Nb, Mo, Ag, Cd, Sb, W and Pb) in MnZn ferrite powder by direct current glow discharge mass spectrometry (GD-MS) was established. MnZn ferrite powder was mixed with copper powder, used as a conductor, and pressed. The effects of MnZn ferrite powder preparation conditions and glow discharge parameters for the sensitivity and stability of signal analysis were investigated. By determining the choice of isotope and the application of the mass resolutions of 4000 (MR, medium resolution) and 10000 (HR, high resolution), mass spectral interference was eliminated. The contents of impurity elements in MnZn ferrite powder was calculated by subtraction after normalizing the total signal of Mn, Zn, Fe, O and Cu. The results showed that the detection limit of 26 kinds of impurity elements was between 0.002 and 0.57 μg/g, and the relative standard deviation (RSD) was between 3.33% and 32.35%. The accuracy of this method was verified by the ICP-MS. The method was simple and practical, which is applied to the determination of impurity elements in MnZn ferrite powder.展开更多
Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formatio...Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH4/H2 from 2 : 8 to 9 : 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2 = 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.展开更多
The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of ...The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.展开更多
基金supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07)National Natural Science Foundation of China(No.12105251)National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).
文摘A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.
文摘Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab- rics. The OAUGDP is a non-thermal plasma with the classical characteristics of a DC normal glow discharge that operates in air (and other gases) at atmospheric pres- sure. Neither a vacuum system nor batch processing is necessary. A wide range of applications to metals, photoresist, films, fabrics, and polymeric webs can be accom- modated by direct exposure of the workpiece to the plasma in parallel-plate reactors. This technolopy is simple, it produces effects that can be obtained in no other way at one atmosphere; it generates minimal pollutants or unwanted by-products; and it is suitable for individual sample or online treatment of metallic surfaces, wafers, films, and fabrics. Early exposures of solid materials to the OAUGDP required minutes to produce rela- tively small increases of surface energy. These durations appeared too long for com- mercial application to fast-moving webs. Recent improvements in OAUGDP gas com- position, power density, plasma quality, recireulating gas flow, and impedance match- ing of the power supply to the parallel plate plasma reactor have made it possible to raise the surface energy of a variety of polymeric webs (PP, PET PE etc.) to levels of 60 to 70 dynes/cm with one second of exposure. In air plasmas, the high surface ener- gies are not durable, and fall to 50 dynes/cm after periods of weeks to months. Here, we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo- ven fabrics made of PP and PET to an impedance matched parallel plate OAUGDP for durations ranging from one second to several tens of seconds. Data will be re- ported on the surface energy, wettability, wickability, and aging effect of polymeric films and fabrics as functions of time of exposure, and time after exposure; the rate and uniformity of photoresist etching; and the production of sub-micron structures by OAUGDP etching at one atmosphere.
文摘Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the
基金The project partially supported by the Project of Key Science and Technology of Education Ministry (00250), the Natural ScienceFoundation of Gansu Province (3ZS041-A25-028), and the Project of KJCXGC-01, NWNU, China
文摘The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,
基金supported the by Project of Key Science and Technology of Education Ministry (20050)the Natural Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science & Technology (KJCXGC-01, NWNU), China
文摘This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50537020 and 50528707).
文摘The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.
文摘The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
文摘The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.
基金supported in part by the Electrostatic Research Foundation of Liu Shanghe Academicians and Experts Workstation,Beijing Orient Institute of Measurement and Test(No.BOIMTLSHJD20221002)。
文摘We present here an investigation of the self-pulsing phenomenon of negative corona and parallel-plate discharge in argon within one frame of a one-dimensional fluid model in cylinder–cylinder electrode geometry.The transition from corona to parallel-plate discharge is obtained by changing the inner and outer radii of the electrodes.The model reproduces the self-pulsing waveform well and provides the spatiotemporal behaviors of the charged particles and electric field during the pulse.The self-pulsing shows a common feature that occurs in various configurations and that does not depend on a specific electrode structure.The self-pulsing is the transformation between a weak-current Townsend mode and a large-current normal glow mode.The behavior of the positive ions is the dominant factor in the formation of the pulse.
基金supported by National Natural Science Foundation of China(Nos.10805013 and 51077035)Funds for Distinguished Young Scientists of Hebei Province,China(No.A2012201045)+2 种基金the Key Project of Chinese Ministry of Education(No.210014)the Natural Science Foundation of Hebei Province(No.A2011201132)Hebei Province Department of Education for Outstanding Youth Project of China(Y2011120)
文摘Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the currentvoltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.
基金the Key Projects of Science and Technology of Education Ministry(00250)the Natural Science Foundation of Gansu Province(3ZS041-A25-028)+1 种基金the Projects of KJCXGC-01,NWNUCansu Key Lab of Polymer Materials,China
文摘This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.
基金National Natural Science Foundation of China(Nos.11875104 and 11475043)open fund of Shanghai center for high performance fibers and composites(X12811901/012).
文摘Atmospheric cascade discharges with pulsed discharge and radio frequency(RF)discharge were experimentally investigated by the temporal evolution of discharge spatial profile and intensity.The indium tin oxide(ITO)coated glass was employed as the transparent electrode to capture the discharge distribution above the electrode surface.It is demonstrated that in the pulsed discharge with dielectric barrier,the first discharge at the rising edge of pulse voltage is uniformly ignited and then forms an expanding plasma ring on the ITO electrode surface,which shrinks to the same diameter as that of bare stainless steel electrode with the generation of second discharge at the falling edge of pulse voltage.The discharge profiles along the electrode surface and discharge gap of the successive RF discharge are dependent on the intensity and spatial distribution of residual plasma species generated by the pulsed discharge,which is determined by the time interval between the pulsed discharge and RF discharge.It is demonstrated that the residual plasma species before the RF discharge ignition help to achieve the stable operation of RF discharge with elevated intensity.
基金The project supported in part by the Project of Key Science and Technology of Education Ministry (00250)the Nature Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science and Technology (KJCXGC-01, NWNU), 2000
文摘In an aqueous solution, normal electrolysis at high voltages switches over spontaneously to glow discharge electrolysis and gives rise to hydroxyl radical, hydrogen peroxide, and aqueous electron, as well as several other active species. Hydroxyl radical directly attacks organic contaminants to make them oxidized. In the present paper, 2-naphthylamine is eventually degraded into hydrogen carbonate and carbon dioxide. The degradation process is analyzed by using an Ultraviolet (UV) absorption spectrum, high-performance liquid chromatography (HPLC) and chemical oxygen demand (COD). It is demonstrated that 2-naphthylamine (co =30 mg·1-1) is completely converted within 2h at 30℃ and 600 V by glow discharge electrolysis, and the degradation is strongly dependent upon the presence of ferrous ions. COD is ascended in the absence of ferrous ions and descended in the presence of them.
基金supported by National Natural Science Foundation of China(Nos.11205044 and 11405042)Hebei Natural Science Fund of China(Nos.A2012201015 and A2011201006)+2 种基金the Research Foundation of Education Bureau of Hebei Province of China(No.Y2012009)the Postdoctoral Science Foundation of Hebei Province of China(No.B2014003004)the Postdoctoral Foundation of Hebei University
文摘In this paper, a one-dimensional plasma fluid model is employed to study the self- sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (〈2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (〉2 mm). The discharge modes in these current oscillations have also been analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.10921202,11221061,11632002,11521091,and 11602005)
文摘Glow discharge is introduced as an artificial disturbance to investigate the evolution of first-and second-mode instabilities in a hypersonic flat plate boundary layer.Experiments are conducted in a Mach 6.5 quiet wind tunnel using Rayleigh scattering visualization and particle image velocimetry(PIV). Detailed analysis of the experimental observations is provided. It is found that the artificially introduced 17 kHz disturbance,which belongs to the first-mode frequency band, can effectively enhance first-mode waves.Moreover, it can enhance second-mode waves even more intensely. Possible mechanisms to explain this phenomenon are discussed.
文摘An atmospheric pressure glow discharge was ignited between a molybdenum anode and the water surface of a cathode for the synthesis of MoO_3 powders. The action of glow discharge leads to the non-equilibrium evaporation of water, sputtering of the metal anode and formation of molybdenum(VI) oxide, which deposited on the anode. The chemical composition and morphology of the obtained powder were performed by using x-ray diffraction spectroscopy,scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the synthesized powders are pure α-MoO_3. The possible mechanism of the formation of molybdenum trioxide during glow discharge treatment was described. The photocatalytic performance of MoO_3 was estimated through the degradation of Rhodamine B under dark and UV irradiation conditions. Orthorhombic MoO_3 exhibited the best photocatalytic activity for the photodegradation of Rhodamine B of 100% under UV irradiation for 15 min.
基金Project(21275162)supported by the National Natural Science Foundation of ChinaProject(KJZH14217)supported by the Achievement Transfer Program of Institutions of Higher Education in Chongqing,ChinaProject(KJ1601224)supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China
文摘An analytical method for the determination of 26 impurity elements (such as Li, Be, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Co, Ni, Ga, Ge, Y, Nb, Mo, Ag, Cd, Sb, W and Pb) in MnZn ferrite powder by direct current glow discharge mass spectrometry (GD-MS) was established. MnZn ferrite powder was mixed with copper powder, used as a conductor, and pressed. The effects of MnZn ferrite powder preparation conditions and glow discharge parameters for the sensitivity and stability of signal analysis were investigated. By determining the choice of isotope and the application of the mass resolutions of 4000 (MR, medium resolution) and 10000 (HR, high resolution), mass spectral interference was eliminated. The contents of impurity elements in MnZn ferrite powder was calculated by subtraction after normalizing the total signal of Mn, Zn, Fe, O and Cu. The results showed that the detection limit of 26 kinds of impurity elements was between 0.002 and 0.57 μg/g, and the relative standard deviation (RSD) was between 3.33% and 32.35%. The accuracy of this method was verified by the ICP-MS. The method was simple and practical, which is applied to the determination of impurity elements in MnZn ferrite powder.
基金National Natural Science Foundation of China (No. 10475060)
文摘Methane conversion to C2 hydrocarbons has been investigated with the addition of hydrogen in a plasma reactor of abnormal glow discharge at atmospheric pressure. The aim of this experiment is to minimize coke formation and improve discharge stability. The typical conditions in the experiment are 300 ml of total feed flux and 400 W of discharge power. The experimental results show that methane conversion is from 91.6% to 35.2% in mol, acetylene selectivity is from 90.2% to 57.6%, and ethylene selectivity is approximately from 7.8% to 3.6%, where the coke increases gradually along with the increase of CH4/H2 from 2 : 8 to 9 : 1. A stable discharge for a considerable running time can be obtained only at a lower ratio of CH4/H2 = 2:8 or 3: 7. These phenomena indicate that the coke deposition during methane conversion is obviously reduced by adding a large amount of hydrogen during an abnormal glow discharge. A qualitative interpretation is presented, namely, with abundant hydrogen, the possibility that hydrogen molecules are activated to hydrogen radicals is increased with the help of the abnormal glow discharge. These hydrogen radicals react with carbon radicals to form C2 hydrocarbon products. Therefore, the deposition of coke is restrained.
基金Project supported by the National Natural Science Foundation of China(Granted Nos.11405022 and 11475040)Dalian High Level Talent Innovation Support Plan,China(Grant No.2015R050)
文摘The gas heating mechanism in the pulse-modulated radio-frequency (rf) discharge at atmospheric pressure was inves- tigated with a one-dimensional two-temperature fluid model. Firstly, the spatiotemporal profiles of the gas temperature (Tg) in both consistent rf discharge and pulse-modulated rf discharge were compared. The results indicated that Tg decreases considerably with the pulse-modulated power, and the elastic collision mechanism plays a more important role in the gas heating change. Secondly, the influences of the duty cycle on the discharge parameters, especially on the Tg, were studied. It was found that Tg decreases almost linearly with the reduction of the duty cycle, and there exists one ideal value of the duty cycle, by which both the Tg can be adjusted and the glow mode can be sustained. Thirdly, the discharge mode changing from αto γ mode in the pulse-modulated rf discharge was investigated, the spatial distributions of Tg in the two modes show different features and the ion Joule heating is more important during the mode transition.