期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Glucose Addition on N Transformations in Paddy Soils with a Gradient of Organic C Content in Subtropical China 被引量:2
1
作者 JIA Jun-xian LI Zhong-pei +1 位作者 LIU Ming CHE Yu-ping 《Agricultural Sciences in China》 CAS CSCD 2010年第9期1309-1316,共8页
To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil or... To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil organic C content. Changes in N mineralization, nitrification and denitrification, as well as their response to glucose addition were measured by incubation experiments in paddy soils derived from Quaternary red clay in subtropical China. Mineralization and denitrification were changed in order of increasing soil fertilities: high 〉 middle 〉 low. During the first week of incubation, net N mineralization and denitrification rates in paddy soil with high fertility were 1.9 and 1.1 times of those in soil with middle fertility and 5.3 and 2.9 times of those in soil with low fertility, respectively. Addition of glucose decreased net N mineralization by approximately 78.8, 109.2 and 177.4% in soils with high, middle and low fertility, respectively. However, denitrification rates in soils with middle and low fertility were increased by 14.4 and 166.2% respectively. The highest nitrate content among the paddy soils tested was 0.62 mg kg-1 and the highest nitrification ratio was 0.33%. Addition of glucose had no obvious effects on nitrate content and nitrification ratio. It was suggested that the intensity of mineralization and denitrification was quite different in soils with different fertility, and increased with increasing soil organic C content. Addition of glucose decreased mineralization, but increased denitrification, and the shifts were greater in soil with low than in soil with high organic C content. Neither addition of glucose nor inherent soil organic C had obvious effects on nitrification in paddy soils tested. 展开更多
关键词 paddy soils of subtropical China soil fertility glucose addition nitrogen transformation
下载PDF
Contrasting patterns of bacterial communities in the rearing water and gut of Penaeus vannamei in response to exogenous glucose addition 被引量:1
2
作者 Lei Huang Haipeng Guo +7 位作者 Zidan Liu Chen Chen Kai Wang Xiaolin Huang Wei Chen Yueyue Zhu Mengchen Yan Demin Zhang 《Marine Life Science & Technology》 SCIE CAS 2022年第2期222-236,共15页
Supplementing exogenous carbon sources is a practical approach to improving shrimp health by manipulating the microbial communities of aquaculture systems. However, little is known about the microbiological processes ... Supplementing exogenous carbon sources is a practical approach to improving shrimp health by manipulating the microbial communities of aquaculture systems. However, little is known about the microbiological processes and mechanisms of these systems. Here, the effects of glucose addition on shrimp growth performance and bacterial communities of the rearing water and the shrimp gut were investigated to address this knowledge gap. The results showed that glucose addition significantly improved the growth and survival of shrimp. Although the α-diversity indices of both bacterioplankton communities and gut microbiota were significantly decreased by adding glucose, both bacterial communities exhibited divergent response patterns to glucose addition. Glucose addition induced a dispersive bacterioplankton community but a more stable gut bacterial community. Bacterial taxa belonging to Ruegeria were significantly enriched by glucose in the guts, especially the operational taxonomic unit 2575 (OTU2575), which showed the highest relative importance to the survival rate and individual weight of shrimp, with the values of 43.8 and 40.6%, respectively. In addition, glucose addition increased the complexity of interspecies interactions within gut bacterial communities and the network nodes from Rhodobacteraceae accounted for higher proportions and linked more with the nodes from other taxa in the glucose addition group than that in control. These findings suggest that glucose addition may provide a more stable gut microbiota for shrimp by increasing the abundance of certain bacterial taxa, such as Ruegeria. 展开更多
关键词 glucose addition C/N ratio SHRIMP Gut microbiota Bacterioplankton community
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部