Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the me...Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic(5 XFAD; Jackson Laboratory) mice and their littermates(wild-type, controls) were used in this study. Additional 6-weekold and 10-week-old 5 XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For10-week-old 5 XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5 XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5 XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University,China on December 17, 2015(approval No. AEEI-2015-182).展开更多
Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established ...Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established after intracerebroventricular injection of β-amyloid peptide (25-35). Subsequently the rats were intraperitoneally treated with osthole (12.5 or 25.0 mg/kg) for 14 successive days. Results showed that osthole treatment significantly improved cognitive impairment and protected hippocampal neurons of AIzheimer's disease rats. Also, osthole treatment alleviated suppressed long-term potentiation in the hippocampus of Alzheimer's disease rats. In these osthole-treated Alzheimer's disease rats, the level of glutamate decreased, but there was no significant change in y-amino-butyric acid. These experimental findings suggest that osthole can improve learning and memory impairment, and increase synaptic plasticity in Alzheimer's disease rats. These effects of osthole may be because of its regulation of central glutamate and y-amino-butyric acid levels.展开更多
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model ...Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes.We treated the rats with exercise and melatonin therapy for 7 consecutive days.Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats,increased delta power values,and regularized delta power rhythm.Additionally,exercise-with-melatonin therapy improved coordination,endurance,and grip strength,as well as learning and memory abilities.At the same time,it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone.These findings suggest that exercise-withmelatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.展开更多
Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models ...Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.展开更多
基金supported by the National Natural Science Foundation of China,No.81571038,81771145(both to YZ)
文摘Mounting evidence suggests that synaptic plasticity provides the cellular biological basis of learning and memory, and plasticity deficits play a key role in dementia caused by Alzheimer's disease. However, the mechanisms by which synaptic dysfunction contributes to the pathogenesis of Alzheimer's disease remain unclear. In the present study, Alzheimer's disease transgenic mice were used to determine the relationship between decreased hippocampal synaptic plasticity and pathological changes and cognitive-behavioral deterioration, as well as possible mechanisms underlying decreased synaptic plasticity in the early stages of Alzheimer's disease-like diseases. APP/PS1 double transgenic(5 XFAD; Jackson Laboratory) mice and their littermates(wild-type, controls) were used in this study. Additional 6-weekold and 10-week-old 5 XFAD mice and wild-type mice were used for electrophysiological recording of hippocampal dentate gyrus. For10-week-old 5 XFAD mice and wild-type mice, the left hippocampus was used for electrophysiological recording, and the right hippocampus was used for biochemical experiments or immunohistochemical staining to observe synaptophysin levels and amyloid beta deposition levels. The results revealed that, compared with wild-type mice, 6-week-old 5 XFAD mice exhibited unaltered long-term potentiation in the hippocampal dentate gyrus. Another set of 5 XFAD mice began to show attenuation at the age of 10 weeks, and a large quantity of amyloid beta protein was accumulated in hippocampal cells. The location of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor and N-methyl-D-aspartic acid receptor subunits in synaptosomes was decreased. These findings indicate that the delocalization of postsynaptic glutamate receptors and an associated decline in synaptic plasticity may be key mechanisms in the early onset of Alzheimer's disease. The use and care of animals were in strict accordance with the ethical standards of the Animal Ethics Committee of Capital Medical University,China on December 17, 2015(approval No. AEEI-2015-182).
基金supported by the Natural Science Foundation of Hebei Province, No. 2004000653Key Project of Hebei Province Health Department, No. 200901830
文摘Osthole, an effective monomer in Chinese medicinal herbs, can cross the blood-brain barrier and protect against brain injury, with few toxic effects. In this study, a rat model of Alzheimer's disease was established after intracerebroventricular injection of β-amyloid peptide (25-35). Subsequently the rats were intraperitoneally treated with osthole (12.5 or 25.0 mg/kg) for 14 successive days. Results showed that osthole treatment significantly improved cognitive impairment and protected hippocampal neurons of AIzheimer's disease rats. Also, osthole treatment alleviated suppressed long-term potentiation in the hippocampus of Alzheimer's disease rats. In these osthole-treated Alzheimer's disease rats, the level of glutamate decreased, but there was no significant change in y-amino-butyric acid. These experimental findings suggest that osthole can improve learning and memory impairment, and increase synaptic plasticity in Alzheimer's disease rats. These effects of osthole may be because of its regulation of central glutamate and y-amino-butyric acid levels.
基金supported by China Rehabilitation Research Center,No.2021zx-03the Special Fund for Joint Training of Doctoral Students between the University of Health and Rehabilitation Sciences and China Rehabilitation Research Center,No.2020 kfdx-008(both to TZ)。
文摘Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer's disease,but its effect on stroke is still poorly understood.In this study,we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes.We treated the rats with exercise and melatonin therapy for 7 consecutive days.Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats,increased delta power values,and regularized delta power rhythm.Additionally,exercise-with-melatonin therapy improved coordination,endurance,and grip strength,as well as learning and memory abilities.At the same time,it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone.These findings suggest that exercise-withmelatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.
基金Supported by the National Natural Science Foundation(30972831)the China Postdoctoral Science Foundation(2013M530880)
文摘Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.