期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Impact of SNP-SNP interactions of DNA repair gene ERCC5 and metabolic gene GSTP1 on gastric cancer/atrophic gastritis risk in a Chinese population 被引量:5
1
作者 Liang Sang Zhi Lv +2 位作者 Li-Ping Sun Qian Xu Yuan Yuan 《World Journal of Gastroenterology》 SCIE CAS 2018年第5期602-612,共11页
AIM To investigate the interactions of the DNA repair gene excision repair cross complementing group 5(ERCC5) and the metabolic gene glutathione S-transferase pi 1(GSTP1) and their effects on atrophic gastritis(AG) an... AIM To investigate the interactions of the DNA repair gene excision repair cross complementing group 5(ERCC5) and the metabolic gene glutathione S-transferase pi 1(GSTP1) and their effects on atrophic gastritis(AG) and gastric cancer(GC) risk.METHODS Seven ERCC5 single nucleotide polymorphisms(SNPs)(rs1047768, rs2094258, rs2228959, rs4150291, rs4150383, rs751402, and rs873601) and GSTP1 SNP rs1695 were detected using the Sequenom MassA RRAY platform in 450 GC patients, 634 AG cases, and 621 healthy control subjects in a Chinese population.RESULTS Two pairwise combinations(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) influenced AG risk(P_(interaction) = 0.008 and 0.043, respectively), and the ERCC5 rs2094258-GSTP1 rs1695 SNP pair demonstrated an antagonistic effect, while ERCC5 rs873601-GSTP1 rs1695 showed a synergistic effect on AG risk OR = 0.51 and 1.79, respectively). No pairwise combinations were observed in relation to GC risk. There were no cumulative effects among the pairwise interactions(ERCC5 rs2094258 and rs873601 with GSTP1 rs1695) on AG susceptibility(P_(trend) > 0.05). When the modification effect of Helicobacter pylori(H. pylori) infection was evaluated, the cumulative effect of one of the aforementioned pairwise interactions(ERCC5 rs873601-GSTP1 rs1695) was associated with an increased AG risk in the case of negative H. pylori status(P_(trend)= 0.043).CONCLUSION There is a multifarious interaction between the DNA repair gene ERCC5 SNPs(rs2094258 and rs873601) and the metabolic gene GSTP1 rs1695, which may form the basis for various inter-individual susceptibilities to AG. 展开更多
关键词 EXCISION repair cross complementing group 5 glutathione s-transferase pi 1 ATROPHIC GASTRITIS Gastric cancer Single nucleotide polymorphisms
下载PDF
Study on Insecticidal Activities and Effect on Three Kinds of Enzymes by 5-Aminolevulinic Acid on Oxya chinensis 被引量:2
2
作者 YIN Kun MA En-bo XUE Chun-rong WU Hai-hua GUO Ya-ping ZHANG Jian-zhen 《Agricultural Sciences in China》 CAS CSCD 2008年第7期841-846,共6页
Insecticidal activities and effects on three enzymic activities caused by 5-aminolevulinic acid (ALA) on Oxya chinensis were studied. Fourth-instar nymphs of O. chinensis were treated with different doses ofALA (A1... Insecticidal activities and effects on three enzymic activities caused by 5-aminolevulinic acid (ALA) on Oxya chinensis were studied. Fourth-instar nymphs of O. chinensis were treated with different doses ofALA (A1,250 mM; A2, 450 mM; A3,750 mM; A4, 1 000 mM). Mortality and the activities of acetylcholinesterase (ACHE), glutathione S-transferase (GSTs), and glutathione peroxidase (GPx) were determinated. The mortality of O. chinensis rose with an increasing dose of ALA. The mortality of high-dose treatments A3 and A4 reached 66.19 and 80.21%, respectively. The value of LD50 was 3.61 (3.29-3.93) mg·g^-1 body weight (95% confidence interval). Biochemical studies showed that the activities of AChE and GPx in the A4 treatment declined by 51.53 and 42.82% in the female, and 42.65 and 43.85% in the male compared to the control, respectively, and the degree of decline reached a significant level at P 〈 0.05. Meanwhile, the GSTs activities of O. chinensis enhanced with increasing dose of ALA. The GSTs activities of female and male O. chinensis in the A4 treatment remarkably increased by 171.05 and 97.42% compared to the control (P〈 0.05). ALA had an obviously toxic effect on O. chinensis. Moreover, ALA caused the photoinactivation of AChE and GPx, which induced nerve transmission blocking and the capability to defend oxidation damage declining. Meanwhile, a high dose of ALA could activate GSTs, which caused a feedback inhibition of the insect to the phototoxic substance. 展开更多
关键词 Oxya chinensis 5-aminolevulinic acid (ALA) acetylcholinesterase (ACHE) glutathione s-transferase (GSTs) glutathione peroxidase (GPx)
下载PDF
A Photosensitivity Insecticide, 5-Aminolevulinic Acid, Exerts EffectiveToxicity to Oxya chinensis (Orthoptera: Acridoidea) 被引量:1
3
作者 YANG Mei-ling YIN Kun +2 位作者 GUO Ya-ping MA En-bo ZHANG Jian-zhen 《Agricultural Sciences in China》 CAS CSCD 2011年第7期1056-1063,共8页
5-Aminolevulinic acid (ALA), a major photosensitivity insecticide, has attracted increasing attention as a new type of highly efficient, environmental friendly pesticide to be used to control the pest. To examine wh... 5-Aminolevulinic acid (ALA), a major photosensitivity insecticide, has attracted increasing attention as a new type of highly efficient, environmental friendly pesticide to be used to control the pest. To examine whether or not ALA acts effectively to grasshopper, Oxya chinensis and elucidate the detoxification mechanism of ALA, the susceptibility to ALA was assessed in O. chinensis and two major metabolic detoxification enzymes including glutathione S-transferases (GSTs) and general esterases (ESTs)-specific activities were compared in different development stages and different body sections of O. chinensis treated by ALA and the control. The results showed that the ALA exhibited obvious toxicity to the grasshopper in different development stages. In the low-dose treatment (0.0597 mmol L-1), the mortalities of O. chinensis reached a significant level (55.5% in the 1st instar nymphs, 61.4% in the 2nd instar nymphs, 71.4% in the 3rd instar nymphs, and 64.4% in the 4th instar nymphs. But, there was no dose-dependent toxic effect. Thereby, we proposed that ALA has the potential for acting as photosensitivity insecticide for controlling O. chinensis. GSTs activity assays using CDNB and DCNB as substrates indicated that the thorax and abdomen of the different instar nymphs treated by ALA showed 1.52-5.56 fold significantly increased GSTs activities compared with the control. However, for the ESTs-specific activity assay, there was no significant difference between O. chinensis treated by ALA and the control within different instar nymphs, when a-NA, a-NB and b-NA were used as substrates. Therefore, GSTs-mediated metabolic detoxification as evidenced by significantly increased GSTs activities might contribute to protect against oxidative damage and oxidative stress by ALA in O. chinensis. 展开更多
关键词 5-aminolevulinic acid TOXICITY glutathione s-transferases general esterases Oxya chinensis
下载PDF
Biological Evaluation of New Schiff Bases: Synthesized from 4-Amino-3,5-dimethyl-1,2,4-triazole, Phenathroline and Bipyridine Dicarboxaldehydes
4
作者 Md. Shafiqul Islam Mohammad R. Karim +2 位作者 William Boadi Seyi Falekun Aminul H. Mirza 《Advances in Biological Chemistry》 2016年第6期180-192,共13页
Four new Schiff bases with promising anticancer activity have been synthesized from 4-amino-3,5-dimethyl-1,2,4-triazole and di-pyridyl-aldehydes. Structures have been established by various spectroscopic methods. The ... Four new Schiff bases with promising anticancer activity have been synthesized from 4-amino-3,5-dimethyl-1,2,4-triazole and di-pyridyl-aldehydes. Structures have been established by various spectroscopic methods. The compounds were tested in vitro to study their cytotoxicity and anti-oxidative activity in human lung carcinoma (A549), breast carcinoma (BT549), prostate adenocarcinoma (PC3) and mouse preadipocytes (3T3-L1) cells. Compound 1 was found to increase Glutathione (GSH) level slightly in all four cell lines. Compound 4 showed better selectivity and cytotoxicity against both BT549 and A549 cells compared to the anticancer drug tamoxifen. With the exception of compound 4 which reduced GSH levels in A549 and BT549, all other compounds maintained GSH levels in comparison to their respective controls. 展开更多
关键词 [2 2’-Bipyridine]-5 5-dicarboxaldehyde Schiff Bases Anticancer glutathione ANTI-BACTERIAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部