Objective To clarify the association between rs1050450 polymorphism in Glutathione peroxidase-1 (GPx-1) and the risk of cardi-ovascular diseases (CVD) by performing a meta-analysis of published studies. There is g...Objective To clarify the association between rs1050450 polymorphism in Glutathione peroxidase-1 (GPx-1) and the risk of cardi-ovascular diseases (CVD) by performing a meta-analysis of published studies. There is growing evidence from different study types for an association of the GPx-1 polymorphism and cardiovascular outcomes, but observational studies have so far shown inconsistent results. Me-thods Relevant publications were searched through PubMed, Embase database databases and the Cochrane Library. We used odds ratios (ORs) with 95%confidence intervals (CIs) to assess the strength of association under the best genetic model. Both Q statistic and the I2 were used to check heterogeneity. Meta-regression analysis was performed to explore heterogeneity source. Sensitivity analysis, cumulative me-ta-analysis analysis and publication bias were used to test the reliability of the results. Results Data were available from two cohort studies and 8 case-control studies involving 1,430 cases and 3,767 controls. The pooled ORs for overall CVD risk was 1.36 with 95%CI:1.08-1.70 under a co-dominant model, and that for East Asian subgroup was 1.84 (95%CI:1.39-2.43). Substantial heterogeneity for ORs were de-tected among all the included studies, mainly caused by ethnic differences between East Asian and non-East Asian populations. Although Egger's regression test suggested no statistical significant publication bias, Begg's funnel plot exhibited obvious asymmetry. The statistical significance disappeared after adjusting for potential publication bias in the overall studies. However, no substantial publication bias was found in the East Asian subgroup. Conclusions GPx-1 gene Pro198Leu and Pro197Leu polymorphisms considerably increased the risk of CVD in the East Asian population. Large-scale investigations are needed to confirm the results in different ethnicities.展开更多
We studied the effect of reduced glutathione on bone marrow stromal cells (BMSCs) treated with 6-hydroxydopamine (6-OHDA), which shows a toxic effect on dopaminergic neurons. The proliferation of BMSCs treated wit...We studied the effect of reduced glutathione on bone marrow stromal cells (BMSCs) treated with 6-hydroxydopamine (6-OHDA), which shows a toxic effect on dopaminergic neurons. The proliferation of BMSCs treated with 6-OHDA decreased, while that of BMSCs treated with reduced glutathione increased. The proliferation of BMSCs treated with both 6-OHDA and reduced glutathione was significantly higher compared with that treated with 6-OHDA alone. These findings indicate that reduced glutathione alleviates the toxic effect of 6-OHDA on BMSCs.展开更多
OBJECTIVE Intracellular aggre⁃gation ofα-synuclein(SNCA)is one of the core pathological features of neurodegenerative disor⁃ders including Parkinson disease,whilst the detailed mechanism for consequently neuron loss ...OBJECTIVE Intracellular aggre⁃gation ofα-synuclein(SNCA)is one of the core pathological features of neurodegenerative disor⁃ders including Parkinson disease,whilst the detailed mechanism for consequently neuron loss has not been fully illustrated.Since the altered phospholipid homeostasis has been suggested to play a role in synucleinopathy,this study aims to depict the fully-featured status of phospholip⁃ids and the targets reposingα-synuclein-related neurotoxicity.METHODS SNCAA53T transgenic mice were utilized as the model of Parkinson disease.Behavioral tests including pole test,rotarod test and gait analysis were conducted to assess the motor features of Parkinsonism.Tyro⁃sine hydroxylase were determined by immunohis⁃tochemistry.Glutathione,dopamine,3,4-dihy⁃droxyphenylacetic acid and homovanillic acid were determined by HPLC-ECD analysis.Assess⁃ment of lipid peroxidation included MDA assay and Liperfluo staining.Phospholipid-omics was analyzed based on LC-MS/MS.Investigation on mechanism was relied on Western blotting and qPCR assay.The injection of AAV into midbrain was achieved by ultra-micro injection pump to obtain the target genotype.RESULTS SNCAA53T transgenic mice displayed progres⁃sively deteriorated motor coordination functions and the mechanisms were related with lipid per⁃oxidation and ferroptosis,which might help to explain the parkinsonism.These hydroperoxides were observed on plasm membrane and were further characterized by LC-MS/MS-based phos⁃pholipid-omics analysis.α-synucleinA53T trans⁃genic mice displayed distinct patterns of phos⁃pholipid peroxidation in midbrain regions com⁃pared to wild type littermates.Among different subtypes of oxidized phospholipids,oxidative phosphatidylcholine(PC-ox)was more promi⁃nently elevated.Phospholipid peroxidation is believed as a biomarker of ferroptosis,which is largely a specialized death program caused by insufficiency of glutathione peroxidase-4(GPX4),the only known enzyme that can reduce lipid hydroperoxides within biological membranes.The deficiency of Gpx4 was demonstrated to be responsible forα-synuclein-induced lipid peroxi⁃dation,and the cell lines and mouse models underwent genetic Gpx4 downregulation showed exacerbated dopaminergic neuron loss and par⁃kinsonism.On the other hand,the potentiation of Gpx4 expression remarkably inhibited dopami⁃nergic ferroptotic death and behavioral deficits in a mouse model with synucleinopathy.CONCLU⁃SION A cellular pathway that Gpx4 deficit-medi⁃ated phospholipid peroxidation and behavioral consequence participated in synucleinopathy,suggesting a potential strategy targeting Gpx4 to alleviate PD symptoms.展开更多
The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neuro...The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.展开更多
文摘Objective To clarify the association between rs1050450 polymorphism in Glutathione peroxidase-1 (GPx-1) and the risk of cardi-ovascular diseases (CVD) by performing a meta-analysis of published studies. There is growing evidence from different study types for an association of the GPx-1 polymorphism and cardiovascular outcomes, but observational studies have so far shown inconsistent results. Me-thods Relevant publications were searched through PubMed, Embase database databases and the Cochrane Library. We used odds ratios (ORs) with 95%confidence intervals (CIs) to assess the strength of association under the best genetic model. Both Q statistic and the I2 were used to check heterogeneity. Meta-regression analysis was performed to explore heterogeneity source. Sensitivity analysis, cumulative me-ta-analysis analysis and publication bias were used to test the reliability of the results. Results Data were available from two cohort studies and 8 case-control studies involving 1,430 cases and 3,767 controls. The pooled ORs for overall CVD risk was 1.36 with 95%CI:1.08-1.70 under a co-dominant model, and that for East Asian subgroup was 1.84 (95%CI:1.39-2.43). Substantial heterogeneity for ORs were de-tected among all the included studies, mainly caused by ethnic differences between East Asian and non-East Asian populations. Although Egger's regression test suggested no statistical significant publication bias, Begg's funnel plot exhibited obvious asymmetry. The statistical significance disappeared after adjusting for potential publication bias in the overall studies. However, no substantial publication bias was found in the East Asian subgroup. Conclusions GPx-1 gene Pro198Leu and Pro197Leu polymorphisms considerably increased the risk of CVD in the East Asian population. Large-scale investigations are needed to confirm the results in different ethnicities.
基金Jiangsu Ordinary University Science Research Project, No. 06XIB320097
文摘We studied the effect of reduced glutathione on bone marrow stromal cells (BMSCs) treated with 6-hydroxydopamine (6-OHDA), which shows a toxic effect on dopaminergic neurons. The proliferation of BMSCs treated with 6-OHDA decreased, while that of BMSCs treated with reduced glutathione increased. The proliferation of BMSCs treated with both 6-OHDA and reduced glutathione was significantly higher compared with that treated with 6-OHDA alone. These findings indicate that reduced glutathione alleviates the toxic effect of 6-OHDA on BMSCs.
基金National Key Research and Development Program of China(2017YFC1700404)Natural Science Foundation of China(81873209)+8 种基金Natural Science Foundation of China(U1801284)Natural Science Foundation of China(81903821)Natural Science Foundation of China(81973718)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Y036)GDUPS(2019),Fun⁃damental Research Funds for the Central Univer⁃sities(21620448)Natural Science Foundation of Guangdong Province(2019A 1515010909)Nat⁃ural Science Foundation of Guangdong Prov⁃ince(2021A1515011297)Science and Tech⁃nology Program of Guangzhou(201903010062)Science and Technology Program of Guang⁃zhou(907158833068),and the Innovation Team Project of Guangdong Provincial Department of Education(2020KCXT D003)。
文摘OBJECTIVE Intracellular aggre⁃gation ofα-synuclein(SNCA)is one of the core pathological features of neurodegenerative disor⁃ders including Parkinson disease,whilst the detailed mechanism for consequently neuron loss has not been fully illustrated.Since the altered phospholipid homeostasis has been suggested to play a role in synucleinopathy,this study aims to depict the fully-featured status of phospholip⁃ids and the targets reposingα-synuclein-related neurotoxicity.METHODS SNCAA53T transgenic mice were utilized as the model of Parkinson disease.Behavioral tests including pole test,rotarod test and gait analysis were conducted to assess the motor features of Parkinsonism.Tyro⁃sine hydroxylase were determined by immunohis⁃tochemistry.Glutathione,dopamine,3,4-dihy⁃droxyphenylacetic acid and homovanillic acid were determined by HPLC-ECD analysis.Assess⁃ment of lipid peroxidation included MDA assay and Liperfluo staining.Phospholipid-omics was analyzed based on LC-MS/MS.Investigation on mechanism was relied on Western blotting and qPCR assay.The injection of AAV into midbrain was achieved by ultra-micro injection pump to obtain the target genotype.RESULTS SNCAA53T transgenic mice displayed progres⁃sively deteriorated motor coordination functions and the mechanisms were related with lipid per⁃oxidation and ferroptosis,which might help to explain the parkinsonism.These hydroperoxides were observed on plasm membrane and were further characterized by LC-MS/MS-based phos⁃pholipid-omics analysis.α-synucleinA53T trans⁃genic mice displayed distinct patterns of phos⁃pholipid peroxidation in midbrain regions com⁃pared to wild type littermates.Among different subtypes of oxidized phospholipids,oxidative phosphatidylcholine(PC-ox)was more promi⁃nently elevated.Phospholipid peroxidation is believed as a biomarker of ferroptosis,which is largely a specialized death program caused by insufficiency of glutathione peroxidase-4(GPX4),the only known enzyme that can reduce lipid hydroperoxides within biological membranes.The deficiency of Gpx4 was demonstrated to be responsible forα-synuclein-induced lipid peroxi⁃dation,and the cell lines and mouse models underwent genetic Gpx4 downregulation showed exacerbated dopaminergic neuron loss and par⁃kinsonism.On the other hand,the potentiation of Gpx4 expression remarkably inhibited dopami⁃nergic ferroptotic death and behavioral deficits in a mouse model with synucleinopathy.CONCLU⁃SION A cellular pathway that Gpx4 deficit-medi⁃ated phospholipid peroxidation and behavioral consequence participated in synucleinopathy,suggesting a potential strategy targeting Gpx4 to alleviate PD symptoms.
文摘The positive effect of levodopa in the treatment of Parkinson’s disease,although it is limited in time and has severe side effects,has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons.Successful preclinical studies with coenzyme Q10,mitoquinone,isradipine,nilotinib,TCH346,neurturin,zonisamide,deferiprone,prasinezumab,and cinpanemab prompted clinical trials.However,these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease,despite its severe side effects after 4–6 years of chronic treatment.The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson’s disease treatment is a big problem.In our opinion,the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body,such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine,that induce a very fast,massive and expansive neurodegenerative process,which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons.The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s patients is due to(i)a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron,(ii)a neurotoxic event that is not expansive and(iii)the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons.The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome,since it(i)is generated within neuromelanin-containing dopaminergic neurons,(ii)does not cause an expansive neurotoxic effect and(iii)triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson’s disease.In conclusion,based on the hypothesis that the neurodegenerative process of idiopathic Parkinson’s disease corresponds to a single-neuron neurodegeneration model,we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2.It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor(erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.