Objective:To investigate the association between amplification of the two regulatory genes controlling glutathione(GSH) levels,glutathione reductase(PfGR) and glutathione S-transferase (PfGST) genes and sensitivity of...Objective:To investigate the association between amplification of the two regulatory genes controlling glutathione(GSH) levels,glutathione reductase(PfGR) and glutathione S-transferase (PfGST) genes and sensitivity of Plasmodium falciparum(P.falciparum) isolates collected from different malaria endemic areas of Thailand to standard antimalarial drugs.Methods:A total of 70 P.falciparum isolates were collected from endemic areas of multi-drug resistance (Tak,Chantaburi and Ranong Provinces) during the year 2008-2009.The in vitro assessment of antimalarial activity of P.falciparum clones(K1- and Dd2 chloroquine resistant and 3D7- chloroquine sensitive) and isolates to chloroquine,quinine,mefloquine and arteusnate was performed based on SYBR Green modified assay.Results:68(97.14%),11(15.71%) and 28(40%) isolates respectively were classified as chloroquine-,quinine- and mefloquine-resistant isolates. With this limited number of P.falciparum isolates included in the analysis,no significant association between amplification of PfGST gene and sensitivity of the parasite to chloroquine, quinine,mefloquine and quinine was found.Based on PCR analysis,Dd2,Kl and 3D7 clones all contained only one copy of the PfGST gene.All isolates(70) also carried only one copy number of PfGST gene.There appears to be an association between amplification of PfGR gene and chloroquine resistance.The 3D7 and Dd2 clones were found to carry only one PfGR gene copy, whereas the K1 clone carried two gene copies.Conclusions:Chloroquine resistance is likely to be a consequence of multi-factors and enzymes in the GSH system may be partly involved. Larger number of parasite isolates are required to increase power of the hypothesis testing in order to confirm the involvement of both genes as well as other genes implicated in glutathione metabolism in conferring chloroquine resistance.展开更多
The response of glutathione S-transferase(GST)in Zostera marina to temperature variation was analyzed at molecular level by cloning the microsomal GST gene and texting the microsomal GST expression regularity under di...The response of glutathione S-transferase(GST)in Zostera marina to temperature variation was analyzed at molecular level by cloning the microsomal GST gene and texting the microsomal GST expression regularity under different temperature.Specific speaking,express ZmGST in Escherichia coli,then purify the recombinant protein and make the thermal stability analysis.Therefore,the experiments were carried out to provide a theoretical basis for the further elaboration to the population degradation mechanisms of Z.marina.In conclusion,the thermostability and the response of ZmGST gene to temperature changes can determine its temperature tolerance range,and affect its resilience in turn.展开更多
Specific activity, substrate specificity, and kinetic parameters (Km and Vmax) of glutathione S-transferases (GSTs) towards three substrates, 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCN...Specific activity, substrate specificity, and kinetic parameters (Km and Vmax) of glutathione S-transferases (GSTs) towards three substrates, 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), and p-nitrobenzene chloride (pNBC) were investigated in six tissues (foregut, midgut, hindgut, fat body, hemolymph, and muscle) of Oxya chinensis. In addition, the inhibition in vitro (ethacrynic acid, and Cibacron Blue 3GA) of Oxya chinensis in the six tissues was also investigated. Glutathione S-transferase activity was detected in all the six tissues examined. The rank order of GST activities towards CDNB was fat body 〉 midgut 〉 hindgut 〉 muscle 〉 foregut 〉 hemolymph both in females and males. Glutathione S-transferase activities in the fat body in females and males were 1.3- to 10.4-fold and 1.1- to 10.0- fold higher than those in the other tissues. The rank order of GST activities towards the other substrates changed slightly. From these results, it was inferred that GSTs in the fat body and midgut played important roles in detoxifying xenobiotics including insecticides and plant allelochemicals in O. chinensis. In the three substrates examined, CDNB seemed to be the best substrate, followed by pNBC and DCNB. The kinetic parameters of GSTs were different among the six tissues. This suggested that GSTs in different tissues have various affinities and catalytic efficiency to substrates. In vitro inhibition study showed that the median inhibition concentration (IC50) values of the two inhibitors to GSTs from the six tissues were different. The results suggested that the two inhibitors have different inhibition potency to GSTs from the different tissues. The observed changes in kinetic parameters and inhibition in vitro among the six tissues of the insect might suggest that the number and structure of isoenzymes and their rate of expression varied for the different tissues.展开更多
As one of the most important antioxidant enzymes, glutathione peroxidase(GPX) protects cells and tissues from oxidative damage, and plays an important role in cardiovascular and cerebrovascular injuries induced by o...As one of the most important antioxidant enzymes, glutathione peroxidase(GPX) protects cells and tissues from oxidative damage, and plays an important role in cardiovascular and cerebrovascular injuries induced by oxida- tive stress. The antioxidant effect of selenium-containing glutathione S-transferase(Se-GST), a mimic of GPX was investigated on rat cardiomyocytes. To explore the protection function of Se-GST in hydrogen peroxide(H202) chal- lenged rat cardiomyocytes, we examined malondialdehyde(MDA), lactate dehydrogenase(LDH), superoxide dismu- tase(SOD) and cell apoptosis. The results demonstrate exposure of rat cardiomyocytes to H202 for 6 and 12 h induced the significant increases of MDA, LDH and apoptosis rate of cardiomyocytes, but pretreatment of rat cardiomyocytes with Se-GST at 0.0005 or 0.001 unit/mL prevents oxidative stress induced by H202 with the decreases of cell apopto- sis. All the results hint Se-GST has antioxidant activity for oxidative stress challenged rat cardiomyocvtes.展开更多
A cDNA encoding a sigma-class glutathione S-transferase of the locust, Locusta migratoria manilensis (LmGSTs1), was cloned by reverse transcriptase-polymerase chain reaction. The 830 bp-long cDNA encoded a 615 bp op...A cDNA encoding a sigma-class glutathione S-transferase of the locust, Locusta migratoria manilensis (LmGSTs1), was cloned by reverse transcriptase-polymerase chain reaction. The 830 bp-long cDNA encoded a 615 bp open reading frame (204 amino acid polypeptide), which exhibited the structural motif and domain organization characteristic of GST sigma-class. It revealed 59, 57, 57, and 56% identities to sigma-class GSTs from Blattella germanica, Gryllotalpa orientalis, Nasonia vitripennis, and Pediculus humanus corporis, respectively. A recombinant protein (LmGSTs1) was functionally expressed in Escherichia coli cells in a soluble form and purified to homogeneity. LmGSTs1 was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GSTs, as well as with p-nitro-benzyl chloride. Its optimal activity was observed at pH 8.0 and at 30℃. Incubation for 30 min at temperatures below 50℃ scarcely affected the activity. The I50 of reactive blue (RB) was 18.5 μmol L-1. In the presence of 0.05 mmol L-1 ethacrynic acid (ECA), LmGSTs1 showed (81±3)% of the original activities.展开更多
The ribosomal protein S29 also known as RPS29, is not only a component of the 40S subunit of ribosome, but also involved in embryonic development, oncogenesis and other pathologic conditions. However, rare commercial ...The ribosomal protein S29 also known as RPS29, is not only a component of the 40S subunit of ribosome, but also involved in embryonic development, oncogenesis and other pathologic conditions. However, rare commercial antibody against RPS29 restricts the discovery of precise physiological and pathological function of this protein. In this study, the whole RPS29 gene was inserted into plasmid pGEX-6p-1 to express glutathione's transferase (GST) fusion proteins in Escherichia eoli (E. coli) strain BL21. High yields of soluble recombinant proteins were obtained. Mice were immunized with the recombinant RPS29 protein. The serum from the immunized mice could specially react with purified recombinant RPS29 proteins and native RPS29 proteins in CCE cells by western blotting, immunofluorescence staining and flow cytometric analysis. Further more the polyclonal antibodies also reacted specifically with human cell strain ECV304, which showed typical cytoplasmatic fluorescence. The polyclonal antibodies we prepared would be an available tool for studying the roles of RPS29 in embryonic development and human diseases.展开更多
Background: The variability in the distribution of the null phenotypes of GSTM1 and GSTT1, due to total or partial gene deletion resulting in the lack of the active enzyme, has been reported in different populations, ...Background: The variability in the distribution of the null phenotypes of GSTM1 and GSTT1, due to total or partial gene deletion resulting in the lack of the active enzyme, has been reported in different populations, especially in ethnically well-defined groups but not in Tabuk. This study investigated the variability in the distribution of the null phenotypes of GSTM1 and GSTT1 in the population of Tabuk (northwestern part of Saudi Arabia). Method: This study was conducted on 200 subjects of Tabuk—northwestern part of Saudi Arabia among which 100 were chronic smokers and 100 were nonsmokers. The subjects were reporting to hospital for routine checkup. All were without past history of any chronic disease and no significant abnormality. GST genotyping was done by multiplex PCR-based methods. The smoker and control groups were compared using a chi-square test with P GSTM1 deletion homozygosity of 14% and 1% was reported among non smokers and smokers, respectively whereas GSTT1 deletion homozygosity of 28% and 6% was reported among non smokers and smokers, respectively. Our results indicate that there are major differences in allelic distribution of GSTM1 and GSTT1 genes between the two groups investigated. Combined analysis of both genes revealed that 15% of smokers and non smokers harbor the deleted genotype of GSTM1 and 34% of smokers and non smokers harbor the deleted genotype of GSTT1 with significant differences. Conclusion: This study enables selecting subgroups among the general population who are more susceptible to DNA damage and will help genetic studies on the association of GST polymorphisms with disease risks and drug effects in Arab population. Studies with a larger sample size are needed to evaluate and confirm the validity of our results.展开更多
基金supported by Thammasat University and The Commission on Higher Education,Ministry of Education of Thailand
文摘Objective:To investigate the association between amplification of the two regulatory genes controlling glutathione(GSH) levels,glutathione reductase(PfGR) and glutathione S-transferase (PfGST) genes and sensitivity of Plasmodium falciparum(P.falciparum) isolates collected from different malaria endemic areas of Thailand to standard antimalarial drugs.Methods:A total of 70 P.falciparum isolates were collected from endemic areas of multi-drug resistance (Tak,Chantaburi and Ranong Provinces) during the year 2008-2009.The in vitro assessment of antimalarial activity of P.falciparum clones(K1- and Dd2 chloroquine resistant and 3D7- chloroquine sensitive) and isolates to chloroquine,quinine,mefloquine and arteusnate was performed based on SYBR Green modified assay.Results:68(97.14%),11(15.71%) and 28(40%) isolates respectively were classified as chloroquine-,quinine- and mefloquine-resistant isolates. With this limited number of P.falciparum isolates included in the analysis,no significant association between amplification of PfGST gene and sensitivity of the parasite to chloroquine, quinine,mefloquine and quinine was found.Based on PCR analysis,Dd2,Kl and 3D7 clones all contained only one copy of the PfGST gene.All isolates(70) also carried only one copy number of PfGST gene.There appears to be an association between amplification of PfGR gene and chloroquine resistance.The 3D7 and Dd2 clones were found to carry only one PfGR gene copy, whereas the K1 clone carried two gene copies.Conclusions:Chloroquine resistance is likely to be a consequence of multi-factors and enzymes in the GSH system may be partly involved. Larger number of parasite isolates are required to increase power of the hypothesis testing in order to confirm the involvement of both genes as well as other genes implicated in glutathione metabolism in conferring chloroquine resistance.
基金The Open Fund of Key Laboratory of Marine Spil Oil Identification and Damage Assessment Technology,State Oceanic Administration under contract No.201704the Shandong Provincial Natural Science Foundation of China under contract No.ZR2018MD020
文摘The response of glutathione S-transferase(GST)in Zostera marina to temperature variation was analyzed at molecular level by cloning the microsomal GST gene and texting the microsomal GST expression regularity under different temperature.Specific speaking,express ZmGST in Escherichia coli,then purify the recombinant protein and make the thermal stability analysis.Therefore,the experiments were carried out to provide a theoretical basis for the further elaboration to the population degradation mechanisms of Z.marina.In conclusion,the thermostability and the response of ZmGST gene to temperature changes can determine its temperature tolerance range,and affect its resilience in turn.
基金supported by the National Natural Science Foundation of China(30570247,30470219)Science and Technology Commission of Shanxi Province,China(041005,2006011075).
文摘Specific activity, substrate specificity, and kinetic parameters (Km and Vmax) of glutathione S-transferases (GSTs) towards three substrates, 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), and p-nitrobenzene chloride (pNBC) were investigated in six tissues (foregut, midgut, hindgut, fat body, hemolymph, and muscle) of Oxya chinensis. In addition, the inhibition in vitro (ethacrynic acid, and Cibacron Blue 3GA) of Oxya chinensis in the six tissues was also investigated. Glutathione S-transferase activity was detected in all the six tissues examined. The rank order of GST activities towards CDNB was fat body 〉 midgut 〉 hindgut 〉 muscle 〉 foregut 〉 hemolymph both in females and males. Glutathione S-transferase activities in the fat body in females and males were 1.3- to 10.4-fold and 1.1- to 10.0- fold higher than those in the other tissues. The rank order of GST activities towards the other substrates changed slightly. From these results, it was inferred that GSTs in the fat body and midgut played important roles in detoxifying xenobiotics including insecticides and plant allelochemicals in O. chinensis. In the three substrates examined, CDNB seemed to be the best substrate, followed by pNBC and DCNB. The kinetic parameters of GSTs were different among the six tissues. This suggested that GSTs in different tissues have various affinities and catalytic efficiency to substrates. In vitro inhibition study showed that the median inhibition concentration (IC50) values of the two inhibitors to GSTs from the six tissues were different. The results suggested that the two inhibitors have different inhibition potency to GSTs from the different tissues. The observed changes in kinetic parameters and inhibition in vitro among the six tissues of the insect might suggest that the number and structure of isoenzymes and their rate of expression varied for the different tissues.
基金Supported by the National Natural Science Foundation of China(Nos.30870540,30970633)
文摘As one of the most important antioxidant enzymes, glutathione peroxidase(GPX) protects cells and tissues from oxidative damage, and plays an important role in cardiovascular and cerebrovascular injuries induced by oxida- tive stress. The antioxidant effect of selenium-containing glutathione S-transferase(Se-GST), a mimic of GPX was investigated on rat cardiomyocytes. To explore the protection function of Se-GST in hydrogen peroxide(H202) chal- lenged rat cardiomyocytes, we examined malondialdehyde(MDA), lactate dehydrogenase(LDH), superoxide dismu- tase(SOD) and cell apoptosis. The results demonstrate exposure of rat cardiomyocytes to H202 for 6 and 12 h induced the significant increases of MDA, LDH and apoptosis rate of cardiomyocytes, but pretreatment of rat cardiomyocytes with Se-GST at 0.0005 or 0.001 unit/mL prevents oxidative stress induced by H202 with the decreases of cell apopto- sis. All the results hint Se-GST has antioxidant activity for oxidative stress challenged rat cardiomyocvtes.
基金supported by the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (30810103907)the National Natural Science Foundation of China (30870302)+2 种基金the Public Welfare Fund for Agriculture, Ministry of Agriculture, China (200903021)the China Postdoctoral Science Foundation (Special Program, 201003656 Regular Program, 20090451359)
文摘A cDNA encoding a sigma-class glutathione S-transferase of the locust, Locusta migratoria manilensis (LmGSTs1), was cloned by reverse transcriptase-polymerase chain reaction. The 830 bp-long cDNA encoded a 615 bp open reading frame (204 amino acid polypeptide), which exhibited the structural motif and domain organization characteristic of GST sigma-class. It revealed 59, 57, 57, and 56% identities to sigma-class GSTs from Blattella germanica, Gryllotalpa orientalis, Nasonia vitripennis, and Pediculus humanus corporis, respectively. A recombinant protein (LmGSTs1) was functionally expressed in Escherichia coli cells in a soluble form and purified to homogeneity. LmGSTs1 was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GSTs, as well as with p-nitro-benzyl chloride. Its optimal activity was observed at pH 8.0 and at 30℃. Incubation for 30 min at temperatures below 50℃ scarcely affected the activity. The I50 of reactive blue (RB) was 18.5 μmol L-1. In the presence of 0.05 mmol L-1 ethacrynic acid (ECA), LmGSTs1 showed (81±3)% of the original activities.
基金Supported by the National Natural Science Foundation of China(30800983,30700418 and 30972596)the Natural Science Foundation of Chongqing(2008BB5113 and 2009BB5015) the Scientific Research Foundation of Third Military Medical University(2009XHG03 and 2009XYY04)
文摘The ribosomal protein S29 also known as RPS29, is not only a component of the 40S subunit of ribosome, but also involved in embryonic development, oncogenesis and other pathologic conditions. However, rare commercial antibody against RPS29 restricts the discovery of precise physiological and pathological function of this protein. In this study, the whole RPS29 gene was inserted into plasmid pGEX-6p-1 to express glutathione's transferase (GST) fusion proteins in Escherichia eoli (E. coli) strain BL21. High yields of soluble recombinant proteins were obtained. Mice were immunized with the recombinant RPS29 protein. The serum from the immunized mice could specially react with purified recombinant RPS29 proteins and native RPS29 proteins in CCE cells by western blotting, immunofluorescence staining and flow cytometric analysis. Further more the polyclonal antibodies also reacted specifically with human cell strain ECV304, which showed typical cytoplasmatic fluorescence. The polyclonal antibodies we prepared would be an available tool for studying the roles of RPS29 in embryonic development and human diseases.
文摘Background: The variability in the distribution of the null phenotypes of GSTM1 and GSTT1, due to total or partial gene deletion resulting in the lack of the active enzyme, has been reported in different populations, especially in ethnically well-defined groups but not in Tabuk. This study investigated the variability in the distribution of the null phenotypes of GSTM1 and GSTT1 in the population of Tabuk (northwestern part of Saudi Arabia). Method: This study was conducted on 200 subjects of Tabuk—northwestern part of Saudi Arabia among which 100 were chronic smokers and 100 were nonsmokers. The subjects were reporting to hospital for routine checkup. All were without past history of any chronic disease and no significant abnormality. GST genotyping was done by multiplex PCR-based methods. The smoker and control groups were compared using a chi-square test with P GSTM1 deletion homozygosity of 14% and 1% was reported among non smokers and smokers, respectively whereas GSTT1 deletion homozygosity of 28% and 6% was reported among non smokers and smokers, respectively. Our results indicate that there are major differences in allelic distribution of GSTM1 and GSTT1 genes between the two groups investigated. Combined analysis of both genes revealed that 15% of smokers and non smokers harbor the deleted genotype of GSTM1 and 34% of smokers and non smokers harbor the deleted genotype of GSTT1 with significant differences. Conclusion: This study enables selecting subgroups among the general population who are more susceptible to DNA damage and will help genetic studies on the association of GST polymorphisms with disease risks and drug effects in Arab population. Studies with a larger sample size are needed to evaluate and confirm the validity of our results.