In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch...In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.展开更多
The high-molecular-weight (HMW) glutenin subunits and their coding genes from Aegilops umbellulata Zhuk. (UU, 2n = 2x = 14) were characterized using SDS-PAGE analysis and molecular approaches. SDS-PAGE analysis showed...The high-molecular-weight (HMW) glutenin subunits and their coding genes from Aegilops umbellulata Zhuk. (UU, 2n = 2x = 14) were characterized using SDS-PAGE analysis and molecular approaches. SDS-PAGE analysis showed that the 1Ux subunits from four different accessions possessed electrophoretic mobilities close to, or slower than, that displayed by the 1Dx2.2 subunit of common wheat. The electrophoretic mobilities of the 1Uy subunits were generally similar to those shown by the 1Dy subunits of common wheat. The complete open reading frames of the 1Ux and 1Uy genes were amplified by PCR and subsequently cloned and sequenced. Amino acid sequence comparisons suggested that the primary structure of the 1Ux and 1Uy subunits were identical to that of published HMW glutenin subunits from related species, Phylogenetic analysis indicated that the HMW glutenin subunits of Ae. umbellulata were most closely related to those encoded by the D genome of Triticeae.展开更多
The biosynthetic time and accumulations of A-, B-, and C-type glutenin subunits in 7 winter wheat cultivars with different quality (strong, medium, weak gluten) were analyzed by SDS-PAGE. The results showed that no ...The biosynthetic time and accumulations of A-, B-, and C-type glutenin subunits in 7 winter wheat cultivars with different quality (strong, medium, weak gluten) were analyzed by SDS-PAGE. The results showed that no glutenin subunit was observed within 8 d after anthesis. Parts or all A-, B-, and C-type subunits appeared around day 12 in different cultivars. Other A-, B-, and C-type subunits appeared gradually. The accumulation of A-, B-, and C-type subunits fluctuated before maturity. The results of analysis of correlation between the ratios of A/T (total content of glutenin subunits), A/C, AJ (B+C), (A+B)/C, and (A+B)/T and SDS-sedimentation value suggested that they were more significant. The negative correlation between the ratio of (B+C)/T and SDS-sedimentation value was more significant, and the correlations between the ratio C/T and the SDS-sedimentation value were significantly negative.展开更多
Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grai...Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.展开更多
Sedimentation values, flour glutenin macropolymer (GMP) contents, composition and contents of high-molecular-weight (HMW) glutenin subunits (GS) of 233 flour samples were determined. Our data indicated that subunit 1 ...Sedimentation values, flour glutenin macropolymer (GMP) contents, composition and contents of high-molecular-weight (HMW) glutenin subunits (GS) of 233 flour samples were determined. Our data indicated that subunit 1 occurred more frequently at Glu-A1 , subunit pair 7 + 8 at Glu-B1 and 2 + 12 at Glu-D1. The significant relationships between Glu-1 quality score and total HMW glutenin content, sedimentation value and GMP content suggested that the composition of HMW-GS affects wheat quality strongly. Moreover, the total content of HMW-GS was correlated with certain quality parameters more significantly. Relationship between subunit 5 + 10 content and breadmaking quality was better than others, but 2 + 12, 7 + 8, 7 + 9 and 4 + 12 also correlated with certain quality parameters significantly. The contents of total HMW-glutenin, x-type subunits and y-type subunits related with sedimentation value, flour GMP content, and Glu-1 quality score more strongly than that of individual subunit or subunit pair. The flour GMP content, with excellent correlation to sedimentation value, total contents of HMW glutenin, x- and y-type subunits and many other quality parameters, could be an ideal indicator of breadmaking quality at earlier generations for breeding purpose for its simple procedure and small scale.展开更多
Parental varieties Suneca and Cook have contrasting alleles at each of the five glutenin subunit loci (Glu-B1, Glu-D1 Glu-A3, Glu-B3, and Glu-D3), a set of 60 lines homozygous at these loci from the F4 progeny populat...Parental varieties Suneca and Cook have contrasting alleles at each of the five glutenin subunit loci (Glu-B1, Glu-D1 Glu-A3, Glu-B3, and Glu-D3), a set of 60 lines homozygous at these loci from the F4 progeny population of Suneca X Cook was chosen to analyze the variation of the size distribution of glutenin polymeric protein (measured by SE-HPLC) and flour mixing properties of these lines and to study relationship between the size distribution of glutenin polymeric protein and wheat flour mixing properties. The results showed that there were very significant differences among the relative size distributions of glutenin polymeric protein (i.e. percentage of unextracTable polymeric protein in the total polymeric protein, or UPP%) and dough development times (i.e. peak time of mixograph, or PTM) of different homozygous lines, respectively. Flour mixograph shape was closely related to UPP% value. The results also indicated that UPP% was very strongly positive correlation with PTM and negative correlation with peak height of mixograph (PHM). Comparing with flour protein content (FP%), UPP% gave greater effect on PTM and PHM, i.e. flour mixing properties, and it can be considered as one of criteria for quality selecting from early generation of breeding program.展开更多
Allelic variation and genetic diversity at HMW glutenin subunits loci, Glu-A1, Glu-B1and Glu-D1 were investigated in 64 accessions of three unique wheats of western Chinausing sodium dodecyl sulphate polyacrylamide ge...Allelic variation and genetic diversity at HMW glutenin subunits loci, Glu-A1, Glu-B1and Glu-D1 were investigated in 64 accessions of three unique wheats of western Chinausing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Two HMWglutenin patterns (i.e., null, 7+8, 2+12 and null, 7, 2+12) in 34 Yunnan wheataccessions, 3 HMW glutenin patterns (i.e., null, 7+8, 2+12; null, 6+8, 2+12 andnull, 7+8, 2) in 24 Tibetan accessions and 1 HMW glutenin pattern (null, 7, 2+12) in6 Xinjiang wheat accessions were found. The Tibetan accession TB18 was found to be witha rare subunit 2 encoded by Glu-D1. A total of 4 (i.e., Glu-A1c, Glu-B1a, Glu-B1b andGlu-D1a), 5 (i.e., Glu-A1c, Glu-B1d, Glu-B1b, Glu-D1a and Glu-D1) and 3 alleles (i.e.,Glu-A1c, Glu-B1a and Glu-D1a) at Glu-1 locus were identified among Yunnan, Tibetan andXinjiang unique wheat accessions, respectively. For Yunnan wheat, Tibetan wheat andXinjiang wheat, the Neis mean genetic variation indexes were 0.1574, 0.1366 and 0,respectively, which might indicate the higher genetic diversity at HMW glutenin subunitsloci of Yunnan and Tibetan wheat accessions as compared to that of Xinjiang wheataccessions. Among the three genomes of hexaploid wheats of western China, the highestNeis genetic variation index was appeared in B genome with the mean value of 0.2674,while the indexes for genomes A and D were 0 and 0.0270, respectively. It might bereasonable to indicate that Glu-B1 showed the highest, Glu-D1 the intermediate and Glu-A1 always the lowest genetic diversity.展开更多
The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, w...The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, which have one or more traits that are useful in wheat improvement. Sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) and acid polyacrylamide-gel electrophoresis (A-PAGE) were used to detect HMW-GS composition and the presence of 1B/1R wheat-rye (Secale cereale L.) chromosome translocation in the wheat germplasm. Bread-making quality scores of these lines were determined. A high level of variations in HMW-GS encoded by Glu-1 locus was observed. Sixteen major HMW-GS, with 30 combinations, were detected. The percentage of cultivars with more than two desirable subunits was 38.7%. Thirteen cultivars had bread-making quality scores of 10 in combination with one or two desirable agronomical traits, such as high-yield potential, dwarfing stem, resistance to diseases, and/or tolerance to abiotic stress. Sixty-eight (36.6%) cultivars possessed 1B/1R translocation. The newly developed germplasm with HMW-GS for good quality can be promising resources for improving bread-making quality of wheat.展开更多
Bio-based films have a considerable role in protecting the environment and extending the shelf-life of vegetables.Glutenin has good film-forming properties as a biological substrate.However,the mechanical performance ...Bio-based films have a considerable role in protecting the environment and extending the shelf-life of vegetables.Glutenin has good film-forming properties as a biological substrate.However,the mechanical performance of pure glutenin film is far lower than those of traditional films.In this study,tamarind gum and glutenin were blended to improve the mechanical properties of the glutenin film.The blend films were prepared at a tamarind gum/glutenin mixing ratio of 1:0.3,1:0.4,and 1:0.5(w/w).The results showed that the mechanical properties of the blend films were ameliorated,especially the tensile strength of the G-TG-2(glutenin-tamarind gum film),which was 2.7 times higher than that of the glutenin film.Meanwhile,the rigid fracture of G-TG-2 was enhanced,with the elongation at break being as high as 89.2%±0.45%.As evidenced by scanning electron microscopic imaging,blend films with excessive glutenin produced a large number of aggregated particles,while the surface of the G-TG-2 film was smooth and compact.Fourier-transform infrared spectroscopy showed that the glutenin and tamarind gum produced strong physical entanglement and noncovalent interactions.Compared with the glutenin film,the hydrophobicity of the blend films was enhanced.The G-TG-2 film with the highest 2,2-diphenyl-1-picrylhydrazyl scavenging rate was used for preserving Agaricus bisporus,which effectively reduced the respiration rate.The color,hardness,quality,and peroxidase and superoxide dismutase activities were well maintained,and the senescence of mushrooms was delayed.Our study not only provided an effective way to preserve mushrooms but also proposed a green and effective bioplastic film with superior properties and simple operating process.The materials included only tamarind gum,glutenin,NaOH,and glycerol,which were simply mixed to promote the application of glutenin,development of the biological packaging industry,and circular development areas.展开更多
The swelling index of glutenin (SIG) and the protein fraction of 25 Chinese wheat varieties were studied with new protein fractions extracting method. The protein fractions compose of monomeric protein, soluble glut...The swelling index of glutenin (SIG) and the protein fraction of 25 Chinese wheat varieties were studied with new protein fractions extracting method. The protein fractions compose of monomeric protein, soluble glutenin and insoluble glutenin. The relations between other protein index, dough character, and fresh noodle quality were also discussed. The SIG results at different time is positively and highly significantly related to the insoluble glutenin content (r= 0.808 -0.867, P< 0.01). The SIG result can reflect the insoluble glutenin content. The protein content, gluten index, farinograph stability time, extensibility length and extensigram energy were positively and significantly correlated with SIG5 and SIG20 (r= 0.516 - 0.734, P<0.05, 0.01).SIG proved to be applicable in Chinese wheat dough evaluation. Fresh noodle making quality parameters were evaluated by fresh noodle length, thickness, maximum resistance to extension, extension area and extension distance, while cooked noodle texture was determined by cutting firmness, compression recovery, surface firmness and TPA by using a texture analyzer of TA.XT2i. The noodle cooking quality was significantly correlated with SIG value. The surface firmness and cutting firmness were more desirable for predicating the quality difference than TPA test and compression. Cooking loss and water absorption were negatively related to SIG value and insoluble content (r = -0.556 - - 0.787, P < 0.05, 0.01). The results showed that SIG test was also suitable in evaluating noodle making and cooking quality in very small sample size, which was very important in wheat breeding programs. Therefore, SIG test, as a small scale test, is suitable to evaluate dough rheological properties for Chinese wheat varieties, and will be helpful in cereal research and wheat breeding program, especially, in early generations.展开更多
As one of the most important cereals,wheat(Triticum aestivum)has high nutritional value and is widely cultivated in China.However,wheat can cause severe allergic reactions,and a growing number of people are developing...As one of the most important cereals,wheat(Triticum aestivum)has high nutritional value and is widely cultivated in China.However,wheat can cause severe allergic reactions,and a growing number of people are developing allergies to Chinese wheat.Low molecular weight glutenin(LMW-GS),an important allergen in susceptible populations,is responsible for celiac disease and wheat contacts dermatitis.In this study,LMW-GS was highly purified from Chinese wheat(Xiaoyan 6)and further identified and characterized.In addition,8 peptides were predicted efficiently by 5 immunological tools,among which 5 peptides showed significant immunoglobulin E binding abilities.Two specific epitopes were found to be in the non-conserved region of the amino acid sequence of LMW-GS,which was speculated to be the specific epitope of Chinese wheat.This systematic research of LMW-GS may provide new insights into the prevention of wheat allergy and development of hypoallergenic wheat products.展开更多
基金funded by the Hainan Provincial Natural Science Foundation of China[Grant Number 2019RC031]National Natural Science Foundation of China[Grant Number 31460407].
文摘In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.
文摘The high-molecular-weight (HMW) glutenin subunits and their coding genes from Aegilops umbellulata Zhuk. (UU, 2n = 2x = 14) were characterized using SDS-PAGE analysis and molecular approaches. SDS-PAGE analysis showed that the 1Ux subunits from four different accessions possessed electrophoretic mobilities close to, or slower than, that displayed by the 1Dx2.2 subunit of common wheat. The electrophoretic mobilities of the 1Uy subunits were generally similar to those shown by the 1Dy subunits of common wheat. The complete open reading frames of the 1Ux and 1Uy genes were amplified by PCR and subsequently cloned and sequenced. Amino acid sequence comparisons suggested that the primary structure of the 1Ux and 1Uy subunits were identical to that of published HMW glutenin subunits from related species, Phylogenetic analysis indicated that the HMW glutenin subunits of Ae. umbellulata were most closely related to those encoded by the D genome of Triticeae.
文摘The biosynthetic time and accumulations of A-, B-, and C-type glutenin subunits in 7 winter wheat cultivars with different quality (strong, medium, weak gluten) were analyzed by SDS-PAGE. The results showed that no glutenin subunit was observed within 8 d after anthesis. Parts or all A-, B-, and C-type subunits appeared around day 12 in different cultivars. Other A-, B-, and C-type subunits appeared gradually. The accumulation of A-, B-, and C-type subunits fluctuated before maturity. The results of analysis of correlation between the ratios of A/T (total content of glutenin subunits), A/C, AJ (B+C), (A+B)/C, and (A+B)/T and SDS-sedimentation value suggested that they were more significant. The negative correlation between the ratio of (B+C)/T and SDS-sedimentation value was more significant, and the correlations between the ratio C/T and the SDS-sedimentation value were significantly negative.
基金financially supported by the National Key Research and Development Program of China(2016YFD0100502)the National Natural Science Foundation of China(31171773)
文摘Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.
基金the National Natural Science Foundation of China(No.39970456 ,39930110).
文摘Sedimentation values, flour glutenin macropolymer (GMP) contents, composition and contents of high-molecular-weight (HMW) glutenin subunits (GS) of 233 flour samples were determined. Our data indicated that subunit 1 occurred more frequently at Glu-A1 , subunit pair 7 + 8 at Glu-B1 and 2 + 12 at Glu-D1. The significant relationships between Glu-1 quality score and total HMW glutenin content, sedimentation value and GMP content suggested that the composition of HMW-GS affects wheat quality strongly. Moreover, the total content of HMW-GS was correlated with certain quality parameters more significantly. Relationship between subunit 5 + 10 content and breadmaking quality was better than others, but 2 + 12, 7 + 8, 7 + 9 and 4 + 12 also correlated with certain quality parameters significantly. The contents of total HMW-glutenin, x-type subunits and y-type subunits related with sedimentation value, flour GMP content, and Glu-1 quality score more strongly than that of individual subunit or subunit pair. The flour GMP content, with excellent correlation to sedimentation value, total contents of HMW glutenin, x- and y-type subunits and many other quality parameters, could be an ideal indicator of breadmaking quality at earlier generations for breeding purpose for its simple procedure and small scale.
文摘Parental varieties Suneca and Cook have contrasting alleles at each of the five glutenin subunit loci (Glu-B1, Glu-D1 Glu-A3, Glu-B3, and Glu-D3), a set of 60 lines homozygous at these loci from the F4 progeny population of Suneca X Cook was chosen to analyze the variation of the size distribution of glutenin polymeric protein (measured by SE-HPLC) and flour mixing properties of these lines and to study relationship between the size distribution of glutenin polymeric protein and wheat flour mixing properties. The results showed that there were very significant differences among the relative size distributions of glutenin polymeric protein (i.e. percentage of unextracTable polymeric protein in the total polymeric protein, or UPP%) and dough development times (i.e. peak time of mixograph, or PTM) of different homozygous lines, respectively. Flour mixograph shape was closely related to UPP% value. The results also indicated that UPP% was very strongly positive correlation with PTM and negative correlation with peak height of mixograph (PHM). Comparing with flour protein content (FP%), UPP% gave greater effect on PTM and PHM, i.e. flour mixing properties, and it can be considered as one of criteria for quality selecting from early generation of breeding program.
文摘Allelic variation and genetic diversity at HMW glutenin subunits loci, Glu-A1, Glu-B1and Glu-D1 were investigated in 64 accessions of three unique wheats of western Chinausing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Two HMWglutenin patterns (i.e., null, 7+8, 2+12 and null, 7, 2+12) in 34 Yunnan wheataccessions, 3 HMW glutenin patterns (i.e., null, 7+8, 2+12; null, 6+8, 2+12 andnull, 7+8, 2) in 24 Tibetan accessions and 1 HMW glutenin pattern (null, 7, 2+12) in6 Xinjiang wheat accessions were found. The Tibetan accession TB18 was found to be witha rare subunit 2 encoded by Glu-D1. A total of 4 (i.e., Glu-A1c, Glu-B1a, Glu-B1b andGlu-D1a), 5 (i.e., Glu-A1c, Glu-B1d, Glu-B1b, Glu-D1a and Glu-D1) and 3 alleles (i.e.,Glu-A1c, Glu-B1a and Glu-D1a) at Glu-1 locus were identified among Yunnan, Tibetan andXinjiang unique wheat accessions, respectively. For Yunnan wheat, Tibetan wheat andXinjiang wheat, the Neis mean genetic variation indexes were 0.1574, 0.1366 and 0,respectively, which might indicate the higher genetic diversity at HMW glutenin subunitsloci of Yunnan and Tibetan wheat accessions as compared to that of Xinjiang wheataccessions. Among the three genomes of hexaploid wheats of western China, the highestNeis genetic variation index was appeared in B genome with the mean value of 0.2674,while the indexes for genomes A and D were 0 and 0.0270, respectively. It might bereasonable to indicate that Glu-B1 showed the highest, Glu-D1 the intermediate and Glu-A1 always the lowest genetic diversity.
文摘The objective of the present study was to characterize the high molecular glutenin subunits (HMW-GS) composition and the presence of 1B/1R translocation in newly developed wheat (Triticum aestivum L.) germplasm, which have one or more traits that are useful in wheat improvement. Sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) and acid polyacrylamide-gel electrophoresis (A-PAGE) were used to detect HMW-GS composition and the presence of 1B/1R wheat-rye (Secale cereale L.) chromosome translocation in the wheat germplasm. Bread-making quality scores of these lines were determined. A high level of variations in HMW-GS encoded by Glu-1 locus was observed. Sixteen major HMW-GS, with 30 combinations, were detected. The percentage of cultivars with more than two desirable subunits was 38.7%. Thirteen cultivars had bread-making quality scores of 10 in combination with one or two desirable agronomical traits, such as high-yield potential, dwarfing stem, resistance to diseases, and/or tolerance to abiotic stress. Sixty-eight (36.6%) cultivars possessed 1B/1R translocation. The newly developed germplasm with HMW-GS for good quality can be promising resources for improving bread-making quality of wheat.
基金the National Natural Science Foundation of China(31901765 and 31972144).
文摘Bio-based films have a considerable role in protecting the environment and extending the shelf-life of vegetables.Glutenin has good film-forming properties as a biological substrate.However,the mechanical performance of pure glutenin film is far lower than those of traditional films.In this study,tamarind gum and glutenin were blended to improve the mechanical properties of the glutenin film.The blend films were prepared at a tamarind gum/glutenin mixing ratio of 1:0.3,1:0.4,and 1:0.5(w/w).The results showed that the mechanical properties of the blend films were ameliorated,especially the tensile strength of the G-TG-2(glutenin-tamarind gum film),which was 2.7 times higher than that of the glutenin film.Meanwhile,the rigid fracture of G-TG-2 was enhanced,with the elongation at break being as high as 89.2%±0.45%.As evidenced by scanning electron microscopic imaging,blend films with excessive glutenin produced a large number of aggregated particles,while the surface of the G-TG-2 film was smooth and compact.Fourier-transform infrared spectroscopy showed that the glutenin and tamarind gum produced strong physical entanglement and noncovalent interactions.Compared with the glutenin film,the hydrophobicity of the blend films was enhanced.The G-TG-2 film with the highest 2,2-diphenyl-1-picrylhydrazyl scavenging rate was used for preserving Agaricus bisporus,which effectively reduced the respiration rate.The color,hardness,quality,and peroxidase and superoxide dismutase activities were well maintained,and the senescence of mushrooms was delayed.Our study not only provided an effective way to preserve mushrooms but also proposed a green and effective bioplastic film with superior properties and simple operating process.The materials included only tamarind gum,glutenin,NaOH,and glycerol,which were simply mixed to promote the application of glutenin,development of the biological packaging industry,and circular development areas.
文摘The swelling index of glutenin (SIG) and the protein fraction of 25 Chinese wheat varieties were studied with new protein fractions extracting method. The protein fractions compose of monomeric protein, soluble glutenin and insoluble glutenin. The relations between other protein index, dough character, and fresh noodle quality were also discussed. The SIG results at different time is positively and highly significantly related to the insoluble glutenin content (r= 0.808 -0.867, P< 0.01). The SIG result can reflect the insoluble glutenin content. The protein content, gluten index, farinograph stability time, extensibility length and extensigram energy were positively and significantly correlated with SIG5 and SIG20 (r= 0.516 - 0.734, P<0.05, 0.01).SIG proved to be applicable in Chinese wheat dough evaluation. Fresh noodle making quality parameters were evaluated by fresh noodle length, thickness, maximum resistance to extension, extension area and extension distance, while cooked noodle texture was determined by cutting firmness, compression recovery, surface firmness and TPA by using a texture analyzer of TA.XT2i. The noodle cooking quality was significantly correlated with SIG value. The surface firmness and cutting firmness were more desirable for predicating the quality difference than TPA test and compression. Cooking loss and water absorption were negatively related to SIG value and insoluble content (r = -0.556 - - 0.787, P < 0.05, 0.01). The results showed that SIG test was also suitable in evaluating noodle making and cooking quality in very small sample size, which was very important in wheat breeding programs. Therefore, SIG test, as a small scale test, is suitable to evaluate dough rheological properties for Chinese wheat varieties, and will be helpful in cereal research and wheat breeding program, especially, in early generations.
基金financially supported by the State Key Research and Development Plan(2019YFC1605002)。
文摘As one of the most important cereals,wheat(Triticum aestivum)has high nutritional value and is widely cultivated in China.However,wheat can cause severe allergic reactions,and a growing number of people are developing allergies to Chinese wheat.Low molecular weight glutenin(LMW-GS),an important allergen in susceptible populations,is responsible for celiac disease and wheat contacts dermatitis.In this study,LMW-GS was highly purified from Chinese wheat(Xiaoyan 6)and further identified and characterized.In addition,8 peptides were predicted efficiently by 5 immunological tools,among which 5 peptides showed significant immunoglobulin E binding abilities.Two specific epitopes were found to be in the non-conserved region of the amino acid sequence of LMW-GS,which was speculated to be the specific epitope of Chinese wheat.This systematic research of LMW-GS may provide new insights into the prevention of wheat allergy and development of hypoallergenic wheat products.