期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions
1
作者 Shanlin Li Danmin Liu +4 位作者 Guowei Wang Peijie Ma Xunlu Wang Jiacheng Wang Ruguang Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期609-621,共13页
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution react... Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality.However,it is limited by the high overpotential of oxygen evolution reaction(OER)at the anode.To reduce the operating voltage of electrolyzer,herein thermodynamically favorable glycerol oxidation reaction(GOR)is proposed to replace the OER.Moreover,vertical Ni O flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution,respectively.Meanwhile,excluding the explosion risk of mixed H_2/O_(2),a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer.Impressively,the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV,and exhibits good long-term stability.This work provides a new paradigm of hydrogen production with low cost and good feasibility. 展开更多
关键词 Hydrogen evolution reaction glycerol oxidation reaction Oxygen evolution reaction Flow cell NANOSTRUCTURE
下载PDF
Rhodium Nanoparticle-Loaded Carbon Black Electrocatalyst for the Glycerol Oxidation Reaction in Alkaline Medium
2
作者 Binh Thi Xuan Lam Masanobu Chiku +1 位作者 Eiji Higuchi Hiroshi Inoue 《Advances in Nanoparticles》 2016年第1期60-66,共7页
Rhodium nanoparticle-loaded carbon black (Rh/CB) was prepared by a wet method, and its activity and durability for glycerol oxidation reaction (GOR) in alkaline medium were compared with Pt, Pd and Au nanoparticle-loa... Rhodium nanoparticle-loaded carbon black (Rh/CB) was prepared by a wet method, and its activity and durability for glycerol oxidation reaction (GOR) in alkaline medium were compared with Pt, Pd and Au nanoparticle-loaded CB (Pt/CB, Pd/CB and Au/CB). In the cyclic voltammogram of the Rh/CB electrode, the redox waves due to hydrogen adsorption/desorption and the surface OH monolayer formation/reduction were observed at more negative potentials than the Pt/CB and Pd/CB electrodes. The onset and peak potentials of the GOR current densities for the Rh/CB electrode were ca. –0.55 and –0.30 V vs. Hg/HgO, respectively, which were 0.10 and 0.20 V more negative than the Pt/CB electrode whose GOR activity was the best, indicating that Rh was a fascinating metal for reducing the overpotential for GOR. In the electrostatic electrolysis with the Rh/CB and Pt/CB electrodes, the decrease in the GOR current density in the former with time was suppressed compared to that in the latter, suggesting that the tolerance to poisoning for the Rh/CB electrode was superior to that for the Pt/CB electrode. 展开更多
关键词 glycerol oxidation Reaction Direct glycerol Fuel Cell RHODIUM NANOPARTICLE
下载PDF
PtAg Nanoparticle Electrocatalysts for the Glycerol Oxidation Reaction in Alkaline Medium
3
作者 Binh Thi Xuan Lam Masanobu Chiku +1 位作者 Eiji Higuchi Hiroshi Inoue 《Advances in Nanoparticles》 2016年第3期167-175,共9页
To improve the activity for glycerol oxidation reaction (GOR) of Pt, PtAg (mole ratio of Pt/Ag = 3 and 1) alloy nanoparticle-loaded carbon black (Pt/CB, PtAg(3:1)/CB, PtAg(1:1)/CB) catalysts were prepared by a wet met... To improve the activity for glycerol oxidation reaction (GOR) of Pt, PtAg (mole ratio of Pt/Ag = 3 and 1) alloy nanoparticle-loaded carbon black (Pt/CB, PtAg(3:1)/CB, PtAg(1:1)/CB) catalysts were prepared by a wet method. The resultant catalysts, moreover, were heat-treated in a N2 atmosphere at 200°C. The alloying of Pt with Ag for each PtAg/CB was confirmed by X-ray diffractometry and electron dispersive X-ray spectrometry. The heat-treatment did not change the crystal structure of the PtAg alloys and increased their particle size. X-ray photoelectron spectroscopy exhibited that stabilizers were completely removed from the PtAg alloy surface, and the Pt4f and Ag3d doublets due to metallic Pt and Ag, respectively, shifted to lower binding energies, supporting the alloying of Pt with Ag. Both PtAg/CB electrodes had two oxidation waves of glycerol irrespective of heat-treatment, which was different from the Pt/CB electrode. The onset potential of the first oxidation wave was -0.60 V, which was 0.20 V less positive than that for the Pt/CB electrode, indicating the alloying of Pt with Ag greatly improved the GOR activity of Pt. The heat-treated PtAg(3:1)/ CB electrode improved the GOR current density of the second oxidation peak. In the potentiostatic electrolysis at -0.1 and 0 V for both PtAg/CB electrodes, the ratio of oxidation current density at 60 min to that at 5 min (j<sub>60</sub>/j<sub>5</sub>), an indicator of the catalyst deterioration, at 0 V was higher than that at -0.1 V, because the adsorbed oxidation intermediates were greatly consumed at the larger overpotential. The heat-treatment of the PtAg(3:1)/CB electrode increased the j60</sub>/j5</sub> value at -0.1 V but decreased that at 0 V. This could be attributed to the formation of high-order oxidation intermediates which might have stronger poisoning effect. 展开更多
关键词 glycerol oxidation Reaction Direct glycerol Fuel Cell PtAg Alloy Bi-Functional Effect
下载PDF
Optimized Electronic Modification of S-Doped CuO Induced by Oxidative Reconstruction for Coupling Glycerol Electrooxidation with Hydrogen Evolution
4
作者 Ruo‑Yao Fan Xue‑Jun Zhai +6 位作者 Wei‑Zhen Qiao Yu‑Sheng Zhang Ning Yu Na Xu Qian‑Xi Lv Yong‑Ming Chai Bin Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期622-637,共16页
Glycerol(electrochemical) oxidation reaction(GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen ... Glycerol(electrochemical) oxidation reaction(GOR) producing organic small molecule acid and coupling with hydrogen evolution reaction is a critical aspect of ensuring balanced glycerol capacity and promoting hydrogen generation on a large scale. However, the development of highly efficient and selective non-noble metal-based GOR electrocatalysts is still a key problem. Here, an S-doped CuO nanorod array catalyst(S-CuO/CF) constructed by sulfur leaching and oxidative remodeling is used to drive GOR at low potentials: It requires potentials of only 1.23 and 1.33 V versus RHE to provide currents of 100 and 500 mA cm^(-2), respectively. Moreover, it shows satisfactory comprehensive performance(at 100 mA cm^(-2), V_(cell) = 1.37 V) when assembled as the anode in asymmetric coupled electrolytic cell. Furthermore, we propose a detailed cycle reaction pathway(in alkaline environment) of S-doped CuO surface promoting GOR to produce formic acid and glycolic acid. Among them, the C–C bond breaking and lattice oxygen deintercalation steps frequently involved in the reaction pathway are the key factors to determine the catalytic performance and product selectivity. This research provides valuable guidance for the development of transition metal-based electrocatalysts for GOR and valuable insights into the glycerol oxidation cycle reaction pathway. 展开更多
关键词 glycerol oxidation reaction(GOR) Hydrogen evolution reaction(HER) CUO Oxidative reconstruction Electronic modification
下载PDF
Vicinal hydroxyl group-inspired selective oxidation of glycerol to glyceric acid on hydroxyapatite supported Pd catalyst 被引量:1
5
作者 Difan Li Xiuge Zhao +4 位作者 Qingqing Zhou Bingjie Ding Anna Zheng Qingpo Peng Zhenshan Hou 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期691-703,共13页
Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation an... Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals. 展开更多
关键词 HYDROXYAPATITE PALLADIUM glycerol oxidation Glyceric acid Vicinal hydroxyl group
下载PDF
Base-free aerobic oxidation of glycerol on TiO_2-supported bimetallic Au–Pt catalysts 被引量:5
6
作者 Yihong Shen Yuming Li Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期669-673,共5页
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au-... The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au-Pt, Au- Pd and Pt-Pd catalysts on TiO2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au-Pd and Pt-Pd while Au was essentially inactive. The presence of Au on the Au-Pt/TiO2 catalysts led to their higher activities (normalized per Pt atom) in a wide range of Au/Pt atomic ratios (i.e. 1/3-7/1 ), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile, the presence of Au on Au-Pt/TiO2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts. 展开更多
关键词 glycerol aerobic oxidation Glyceraldehyde Dihydroxyacetone Bimetallic Au-Pt catalyst Synergetic effect
下载PDF
Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol 被引量:1
7
作者 Minjian Pan Jingnan Wang +7 位作者 Wenzhao Fu Bingxu Chen Jiaqi Lei Wenyao Chen Xuezhi Duan De Chen Gang Qian Xinggui Zhou 《Green Energy & Environment》 CSCD 2020年第1期76-82,共7页
Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and p... Understanding the nature of Pt active sites is of great importance for the structure-sensitive base-free oxidation of glycerol. In the present work, the remarkable Pt particle size effects on glycerol conversion and products formation from the oxidation of the primary and the secondary hydroxyl groups are understood by combining the model calculations and DFT calculations, aiming to discriminate the corresponding dominant Pt active sites. The Pt(100) facet is demonstrated to be the dominant active sites for the glycerol conversion and the products formation from the two routes. The insights revealed here could shed new light on fundamental understanding of the Pt particle size effects and then guiding the design and optimization of Pt-catalyzed base-free oxidation of glycerol toward targeted products. 展开更多
关键词 Base-free oxidation of glycerol Pt/CNTs catalyst Active sites Model calculations DFT calculations
下载PDF
Glycerol Electrooxidation over Precision-Synthesized Gold Nanocrystals with Different Surface Facets
8
作者 Hansen Mou Fang Lu +5 位作者 Zechao Zhuang Qiaowan Chang Lihua Zhang Xiaobo Chen Yugang Zhang Jingguang G.Chen 《Precision Chemistry》 2024年第3期103-111,共9页
Electrochemical glycerol oxidation(EGO)emerges as a promising route to valorize glycerol,an underutilized byproduct from biodiesel production,into value-added chemicals.This study employed three types of gold(Au)nanoc... Electrochemical glycerol oxidation(EGO)emerges as a promising route to valorize glycerol,an underutilized byproduct from biodiesel production,into value-added chemicals.This study employed three types of gold(Au)nanocrystals with controlled shapes to elucidate the facet-dependent electrocatalytic behavior in EGO.Octahedral,rhombic dodecahedral,and cubic Au nanocrystals with{111},{110},and{100}facets,respectively,were precisely synthesized with uniform size and shape.Rhombic dodecahedra exhibited the lowest onset potential for EGO due to facile AuOH formation,while octahedra showed enhanced electrochemical activity for glycerol oxidation and resistance to poisoning.In-situ FTIR analysis revealed that Au{111}surfaces selectively favored C_(2) products,whereas Au{100}surfaces promoted C_(3) product formation,highlighting the significant effect of facet orientation on EGO performance and informing catalyst design. 展开更多
关键词 Electrochemical glycerol oxidation Precision synthesis Shaped nanocrystals Au nanocrystals SAXS In-situ FTIR
原文传递
High-entropy selenides: A new platform for highly selective oxidation of glycerol to formate and energy-saving hydrogen evolution in alkali-acid hybrid electrolytic cell 被引量:1
9
作者 Hu Yao Yibo Wang +4 位作者 Yinan Zheng Xin Yu Junjie Ge Yonghong Zhu Xiaohui Guo 《Nano Research》 SCIE EI CSCD 2023年第8期10832-10839,共8页
Glycerol oxidation reaction(GOR)coupled with hydrogen generation simultaneously is a promising strategy for developing sustainable energy conversion technologies,but the complexity of glycerol oxidation products and t... Glycerol oxidation reaction(GOR)coupled with hydrogen generation simultaneously is a promising strategy for developing sustainable energy conversion technologies,but the complexity of glycerol oxidation products and the high coupling hydrogen evolution potential limit its wide application.In this paper,a self-supported high-entropy selenide electrode can be fabricated via a simple hydrothermal process.Then,the prepared electrode as an advanced catalyst displays optimal catalytic activity(1.20 V at 10 mA·cm^(−2))and high selectivity for the formation of formate in GOR.The results show that the lattice distortion effect of high entropy materials composed of multiple elements is mainly responsible for the greatly improved catalytic activity and selectivity for GOR.Moreover,an advanced alkali-acid hybrid electrolytic cell was assembled that enables efficient energy-saving hydrogen generation and GOR simultaneously.Herein,the electrolyzer requires only 0.5 V applied voltage to reach 10 mA·cm^(−2) for hydrogen generation and maintains long-term operation stability. 展开更多
关键词 high-entropy selenides lattice distortion glycerol oxidation reaction(GOR) FORMATE activity
原文传递
Paired formate and H_(2) productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts 被引量:2
10
作者 Xuan Liu Zhongying Fang +5 位作者 Xue Teng Yanli Niu Shuaiqi Gong Wei Chen Thomas JMeyer Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期432-441,I0012,共11页
Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,f... Electrocatalytic water splitting provides a potentially sustainable approach for hydrogen production,but is typically restrained by kinetically slow anodic oxygen evolution reaction(OER)which is of lesser value.Here,free-standing,hetero-structured Ni_(3)N-Ni_(0.2)Mo_(0.8)N nanowire arrays are prepared on carbon cloth(CC)electrodes for hydrogen evolution reaction(HER)and glycerol oxidation reaction(GOR)to formate with a remarkably high Faradaic efficiency of 96%.A two-electrode electrolyzer for GOR-assisted hydrogen production operates with a current density of 10 mA cm^(-2)at an applied cell voltage of 1.40 V,220 mV lower than for alkaline water splitting.In-situ Raman measurements identify Ni(Ⅲ)as the active form of the catalyst for GOR rather than Ni(IV)and in-situ Fourier transform infrared(FTIR)spectroscopy measurements reveal pathways for GOR to formate.From density functional theory(DFT)calculations,the Ni_(3)N-Ni_(0.2)Mo_(0.8)N heterostructure is beneficial for optimizing adsorption energies of reagents and intermediates and for promoting HER and GOR activities by charge redistribution across the heterointerface.The same electrode also catalyzes conversion of ethylene glycol from polyethylene terephthalate(PET)plastic hydrolysate into formate.The combined results show that electrolytic H_(2) and formate production from alkaline glycerol and ethylene glycol solutions provide a promising strategy as a cost-effective energy supply. 展开更多
关键词 Transition metal nitrides Heterostructures Hydrogen evolution reaction glycerol and ethylene glycol oxidation Formic acid
下载PDF
Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis 被引量:4
11
作者 Lin Dong Guan-Ru Chang +2 位作者 Yi Feng Xian-Zhi Yao Xin-Yao Yu 《Rare Metals》 SCIE EI CAS CSCD 2022年第5期1583-1594,共12页
Energy-saving glycerol electrolysis with lower potential than water spitting endows a promising way for the concurrent production of value-added formate and high-purity hydrogen. However, there is still lack of effici... Energy-saving glycerol electrolysis with lower potential than water spitting endows a promising way for the concurrent production of value-added formate and high-purity hydrogen. However, there is still lack of efficient electrocatalysts at both anode and cathode for glycerol electrolysis. Herein, we report the activation of Ni site in NiV layered double hydroxide(LDH) by electrochemical and N_(2)/H_(2) plasma regulations for boosting the activity of glycerol oxidation reaction(GOR) and hydrogen evolution reaction(HER), respectively. Specifically, boosted GOR performance with a low overpotential(1.23 V at 10 mA·cm^(-2)) and a high Faradic efficiency(94%) is demonstrated by electrochemically regulated NiV LDH(ENiV LDH) with elevated valence state of Ni site. In situ Raman spectrum reveals the generation of Ni(Ⅲ) species by electrochemical regulation, and the highly active Ni(Ⅲ)can be regenerated with the process of electrochemical oxidation. Additionally, the possible reaction pathway is speculated based on the in situ Fourier transform infrared spectroscopy(FTIR) and high-performance liquid chromatography results. The plasma-regulated NiV LDH(PNiV LDH) with lower valence state of Ni site exhibits outstanding HER activity, displaying a low overpotential of 45 m V to deliver 10 mA·cm^(-2).When employing E-NiV LDH and P-NiV LDH as anode and cathode electrocatalyst, respectively, the assembled electrolyzer merely needs 1.25 V to achieve 10 m A·cm^(-2) for simultaneous production of formate and hydrogen, demonstrating remarkable 320 mV of lower potential than water electrolysis. 展开更多
关键词 glycerol electrolysis glycerol oxidation reaction Hydrogen evolution reaction NiV LDH FORMATE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部