Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical p...Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical polymerization of ethyl 2-bromoacrylate. The obtained comblike polymers were characterized by GPC and 1H NMR.展开更多
A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the ato...A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.展开更多
The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The depen...The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The dependence of the specific rotation on molecular weight was investigated.展开更多
Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyry...Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.展开更多
The radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate was carried out via atomtransfer radical polymerization (ATRP) initiated by ethyl 2-bromoisobutyrate and catalyzed by CuBr/2,2'-b...The radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate was carried out via atomtransfer radical polymerization (ATRP) initiated by ethyl 2-bromoisobutyrate and catalyzed by CuBr/2,2'-bipyridinecomplex. This polymerization proceeds in a living fashion with controlled molecular weight and low polydispersity. Theobtained copolymer was esterified with 2-bromoisobutylryl bromide yielding a macroinitiator, poly(methyl methacrylate-co-2-hydroxyethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate), and its structure was characterized by ~1H-NMR. This macroinitiator was used for ATRP of styrene to synthesize poly(methyl methacrylate)-graft-polystyrene. Themolecular weight of graft copolymer increased with the monomer conversion, and the polydispersity remained relatively low.The individual grafted polystyrene chains were cleaved from the macroinitiator backbone by hydrolysis and the hydrolyzed product was characterized by ~1H-NMR and GPC.展开更多
Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as in...Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.展开更多
Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microsco...Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.展开更多
The atom transfer radical polymerization (ATRP) of methyl methacrylate using α.α dichlorotoluene or α.α.α-trichlorotoluene as the initiator and CuCl/2.2'-bipyridine complex as the catalyst was investigated. ...The atom transfer radical polymerization (ATRP) of methyl methacrylate using α.α dichlorotoluene or α.α.α-trichlorotoluene as the initiator and CuCl/2.2'-bipyridine complex as the catalyst was investigated. α,α-Dichlorotoluene gave good control of molecular weight with high initiation efficiency and low polydispersity. While α.α.α-trichlorotoluene gave very slow polymerization rate. which could be improved by the addition of Cu (0) to the system.展开更多
Atom transfer radical polymerizations (ATRPs) of styrene (St) in bulk initiated by six iniferter reagents were carried out, respectively, in the present of copper (1) bromide (CuBr) and N, N,N',N",N"-pentam...Atom transfer radical polymerizations (ATRPs) of styrene (St) in bulk initiated by six iniferter reagents were carried out, respectively, in the present of copper (1) bromide (CuBr) and N, N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) at 115℃. All the kinetic plots were first-order with respect to the monomer concentrations. At the same time, the corresponding molecular weights of the polymers increased linearly with the respective monomer conversions. Furthermore, the molecular weight distributions remained relatively narrow (Mw/Mn〈1.50) in all cases. Solution ATRP of St in dimethyl- formamide (DMF) initiated by benzyl N, N-diethyldithiocarba- mate (BDC) also showed the characteristics of living radical polymerization. The results of 1H NMR analysis and chain extension experiment confirmed that the well-defined polystyrene (PS) bearing photo-liable group has been obtained via ATRP of St using photoiniferter reagents as the initiators.展开更多
A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styre...A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.展开更多
In order to enhance the water repellence property of cotton fabric, cotton fabric was grafted using hexafluorobutyl methacrylate( HFMT) monomer via atom transfer radical polymerization( ATRP) method. Water repellent c...In order to enhance the water repellence property of cotton fabric, cotton fabric was grafted using hexafluorobutyl methacrylate( HFMT) monomer via atom transfer radical polymerization( ATRP) method. Water repellent cotton fabric was successfully prepared, and characterized by scanning electron microscopy( SEM),Fourier transform infrared spectroscopy( FTIR), and X-ray photoelectron spectroscopy( XPS). The SEM images of the HFMT-treated cotton displayed significant difference from the untreated one. FT-IR characterization of the HFMTtreated cotton indicated that HFMT was successfully grafted onto the surface of the cotton fabric. XPS analysis indicated that the fluorine element of the HFMT-treated cotton existing on the surface of the cotton fabric. The surface contact angle test as well as the water repellence rating test showed that the water repellence of the HFMTtreated cotton fabric was much better than that of the untreated cotton fabric. The surface contact angle of the HFMT-treated cotton fabric could reach( 132. 4 ± 2. 2) °,and the water repellence rating could achieve grade 3. The washing durability of the HFMT-treated fabric was also investigated. The surface contact angle of the HFMTtreated cotton fabric could reach( 121. 1 ± 2. 1) ° after 20 washing times. Furthermore, the whiteness, air permeability, breaking strength,and breaking elongation of the HFMT-treated cotton fabric decreased slightly compared with the untreated cotton fabric.Finally,cotton fabric with good water repellence property and excellent washing durability could be obtained with little effect on the intrinsic properties of cotton fabric.展开更多
The kinetics of atom transfer radical polymerization(ATRP) of methyl methacrylate(MMA) initiated by cellulose based macroinitator, cellulose chloroacetate, performed in ionic liquid(1-N-butyl-3-methylimidazolium ...The kinetics of atom transfer radical polymerization(ATRP) of methyl methacrylate(MMA) initiated by cellulose based macroinitator, cellulose chloroacetate, performed in ionic liquid(1-N-butyl-3-methylimidazolium chloride, BMIMC1), dimethyl sulfoxide(DMSO) and dimethyl formamide(DMF) were respectively studied in detail. The polymerizations were carried out under homogeneous conditions with CuBr as catalyst and 2,2'-bipyridine(bpy) as ligand. The dependences of the rate of polymerization on solvent, temperature, monomer/initiator ratio and catalyst/ligand ratio were presented. Plots of ln([M]0/[M]t) vs. time and molecular weight vs. conversion showed a linear dependence, indicating a constant number of propagating species throughout the polymerization as well as a negligible contribution of termination or transfer reactions. On the basis of an Arrhenius plot, the apparent energy of activation(AEaapp ) for ATRP of MMA in BMIMC1 was 16.6 kJ/mol which is much lower than that in diphenyl ether.展开更多
In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer...In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer (RAFT) polymerization successfully. The copolymerization kinetics was investigated under the molar ratio of n[GMA+DMAEMA]o/n[AIBN]o/n[CPDN]o=300/1/3 at 60℃. The copolymerization showed typical "living" features such as first-order polymerization kinetics, linear increase of molecular weight with monomer conversion and narrow molecular weight distribution. The reactivity ratios of GMA and DMAEMA were calculated by the extended Kelen-Tudos linearization methods. The epoxy group of the copolymer PGMA-co-PDMAEMA remained intact under the conditions of RAFT copolymerization and could easily be post-modified by ethylenedia- mine. Moreover, the modified copolymer could be used as a gene carrier.展开更多
In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(...In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.展开更多
Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiet...Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethylenetriamine), CuCl/MA5-DETA (N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy= 2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by ^1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.展开更多
The polymerization of n-butyl methacrylate was investigated using the Atom Transfer Radical Polymerization technique with CuBr and CuCl/N,N,N',N',N'-pentamethyldiethylenetriamine catalytic systems. Various...The polymerization of n-butyl methacrylate was investigated using the Atom Transfer Radical Polymerization technique with CuBr and CuCl/N,N,N',N',N'-pentamethyldiethylenetriamine catalytic systems. Various combinations of catalyst systems and initiators were utilized in order to optimize the polymerization conditions and to obtain well-defined polymers (i.e. controlled molecular weights and low polydispersities). It has been found that the optimal initiator for this system is a chlorine-based initiator, when the catalyst used is a salt in conjunction with the N,N,N',N',N'- pentamethyldiethylenetriamine ligand. Bromine-based initiators tend to result in large amounts of initial termination, leading to polymers with less than ideal chain end functionality, even if CuCl is used as the species to invoke the halogen exchange. Additionally, the effects of the polymerization temperature, species and the initiator structure were determined.展开更多
A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polyme...A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.展开更多
Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)...Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)polymerization of phosphorus-containing monomers. In addition, different properties of the polymers involved in the phosphonate group in various chemical environments are demonstrated, and their potential applications are briefly discussed.展开更多
This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism st...This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism study and molecular design in CLRP.The mechanism study in CLRP aided by microwave,initiated by γ-radiation at low temperature,mediated by iron,in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized.The molecular design in CLRP,especially in RAFT polymerization for mechanism study,and in achieving tailor-made functional polymers is studied and discussed in the later part.展开更多
The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, ...The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, namely, CCl4-FeCl3-1-acetyl-2-phenylhydrazine (APH) and CCl4-FeCl3-ascorbic acid (AA) is reported. The living feature of this process was confirmed by obtaining well-defined polymers with controlled molecular weight, narrow molecular weight distribution, and a chain-extension experiment. Both reducing agents, an APH as well as an AA, possess the equal kinetic activitis.展开更多
文摘Comblike poly(methyl methacrylate) was synthesized by atom transfer radical polymerization of methyl methacrylate with poly(ethyl 2-bromoacrylate) as a macroinitiator, which was prepared by conventional free radical polymerization of ethyl 2-bromoacrylate. The obtained comblike polymers were characterized by GPC and 1H NMR.
文摘A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.
文摘The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The dependence of the specific rotation on molecular weight was investigated.
基金National Natural Science Foundation of China(No.50673071,No.50973079)Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.07KJD540188,No.09KJA540001)
文摘Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.
基金This project was supported in part by the Ministry of Education of China (No. JG2000-11).
文摘The radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate was carried out via atomtransfer radical polymerization (ATRP) initiated by ethyl 2-bromoisobutyrate and catalyzed by CuBr/2,2'-bipyridinecomplex. This polymerization proceeds in a living fashion with controlled molecular weight and low polydispersity. Theobtained copolymer was esterified with 2-bromoisobutylryl bromide yielding a macroinitiator, poly(methyl methacrylate-co-2-hydroxyethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate), and its structure was characterized by ~1H-NMR. This macroinitiator was used for ATRP of styrene to synthesize poly(methyl methacrylate)-graft-polystyrene. Themolecular weight of graft copolymer increased with the monomer conversion, and the polydispersity remained relatively low.The individual grafted polystyrene chains were cleaved from the macroinitiator backbone by hydrolysis and the hydrolyzed product was characterized by ~1H-NMR and GPC.
基金The Project is supported by the National Natural Science Foundation of China (Grant No. 29634010-2), Shanghai Education Development Foundation Shuguang Program (Project SG97008) and Research Institute of Beijing Yanshan Petrochemical Corporation.
文摘Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.
基金Project(21376271)supported by the National Natural Science Foundation of ChinaProject(2013)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China+2 种基金Projects(CL12129,201310533008)supported by the Undergraduates Innovative Training Foundation of Central South University,ChinaProject(Z12060)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,ChinaProject(CSUZC2013008)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.
文摘The atom transfer radical polymerization (ATRP) of methyl methacrylate using α.α dichlorotoluene or α.α.α-trichlorotoluene as the initiator and CuCl/2.2'-bipyridine complex as the catalyst was investigated. α,α-Dichlorotoluene gave good control of molecular weight with high initiation efficiency and low polydispersity. While α.α.α-trichlorotoluene gave very slow polymerization rate. which could be improved by the addition of Cu (0) to the system.
基金Acknowledgments: The work was supported by the National Nature Science Foundation of China (No. 20574050), the Science and Technology Development Planning of Jiangsu Province (No. BK2007702 and BK2007048), and the Nature Science Key Basic Research of Jiangsu Province for Higher Education (No. 05KJA15008).
文摘Atom transfer radical polymerizations (ATRPs) of styrene (St) in bulk initiated by six iniferter reagents were carried out, respectively, in the present of copper (1) bromide (CuBr) and N, N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) at 115℃. All the kinetic plots were first-order with respect to the monomer concentrations. At the same time, the corresponding molecular weights of the polymers increased linearly with the respective monomer conversions. Furthermore, the molecular weight distributions remained relatively narrow (Mw/Mn〈1.50) in all cases. Solution ATRP of St in dimethyl- formamide (DMF) initiated by benzyl N, N-diethyldithiocarba- mate (BDC) also showed the characteristics of living radical polymerization. The results of 1H NMR analysis and chain extension experiment confirmed that the well-defined polystyrene (PS) bearing photo-liable group has been obtained via ATRP of St using photoiniferter reagents as the initiators.
文摘A novel photo-induced initiating system, 2,2-dimethoxy-2-phenylacetophenone (DMPA)/ferric tri(NN-diethyldithiocarbamate) [Fe(DC)(3)], was developed and used for the atom transfer radical polymerization (ATRP) of styrene in toluene. The polymerization proceeds with DMPA as photo-initiator, Fe(DC)(3) as catalyst and DC as a reversible transfer group, while the halogen and ligands are free. Well-defined PSt was prepared and the polymerization mechanism revealed by end group analysis belongs to a reverse ATRP. Block copolymer was prepared by using thus obtained PSt as macroinitiator and Fe(DC)(2) as catalyst under UV light irradiation via a conventional ATRP process.
基金National Natural Science Foundations of China(Nos.51203107,51273134,and 51273140)Jiangsu Province Project of Postgraduate Innovation Engineering,China(No.CXZZ13_0818)+1 种基金Qing Lan Project,Jiangsu,ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘In order to enhance the water repellence property of cotton fabric, cotton fabric was grafted using hexafluorobutyl methacrylate( HFMT) monomer via atom transfer radical polymerization( ATRP) method. Water repellent cotton fabric was successfully prepared, and characterized by scanning electron microscopy( SEM),Fourier transform infrared spectroscopy( FTIR), and X-ray photoelectron spectroscopy( XPS). The SEM images of the HFMT-treated cotton displayed significant difference from the untreated one. FT-IR characterization of the HFMTtreated cotton indicated that HFMT was successfully grafted onto the surface of the cotton fabric. XPS analysis indicated that the fluorine element of the HFMT-treated cotton existing on the surface of the cotton fabric. The surface contact angle test as well as the water repellence rating test showed that the water repellence of the HFMTtreated cotton fabric was much better than that of the untreated cotton fabric. The surface contact angle of the HFMT-treated cotton fabric could reach( 132. 4 ± 2. 2) °,and the water repellence rating could achieve grade 3. The washing durability of the HFMT-treated fabric was also investigated. The surface contact angle of the HFMTtreated cotton fabric could reach( 121. 1 ± 2. 1) ° after 20 washing times. Furthermore, the whiteness, air permeability, breaking strength,and breaking elongation of the HFMT-treated cotton fabric decreased slightly compared with the untreated cotton fabric.Finally,cotton fabric with good water repellence property and excellent washing durability could be obtained with little effect on the intrinsic properties of cotton fabric.
基金Supported by the National Natural Science Foundation of China(No.21077024), the Natural Science Foundation of Fujian Province, China(No.2011 J05026) and the Initial Funding of Fuzhou University, China(No.0460022326).
文摘The kinetics of atom transfer radical polymerization(ATRP) of methyl methacrylate(MMA) initiated by cellulose based macroinitator, cellulose chloroacetate, performed in ionic liquid(1-N-butyl-3-methylimidazolium chloride, BMIMC1), dimethyl sulfoxide(DMSO) and dimethyl formamide(DMF) were respectively studied in detail. The polymerizations were carried out under homogeneous conditions with CuBr as catalyst and 2,2'-bipyridine(bpy) as ligand. The dependences of the rate of polymerization on solvent, temperature, monomer/initiator ratio and catalyst/ligand ratio were presented. Plots of ln([M]0/[M]t) vs. time and molecular weight vs. conversion showed a linear dependence, indicating a constant number of propagating species throughout the polymerization as well as a negligible contribution of termination or transfer reactions. On the basis of an Arrhenius plot, the apparent energy of activation(AEaapp ) for ATRP of MMA in BMIMC1 was 16.6 kJ/mol which is much lower than that in diphenyl ether.
文摘In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer (RAFT) polymerization successfully. The copolymerization kinetics was investigated under the molar ratio of n[GMA+DMAEMA]o/n[AIBN]o/n[CPDN]o=300/1/3 at 60℃. The copolymerization showed typical "living" features such as first-order polymerization kinetics, linear increase of molecular weight with monomer conversion and narrow molecular weight distribution. The reactivity ratios of GMA and DMAEMA were calculated by the extended Kelen-Tudos linearization methods. The epoxy group of the copolymer PGMA-co-PDMAEMA remained intact under the conditions of RAFT copolymerization and could easily be post-modified by ethylenedia- mine. Moreover, the modified copolymer could be used as a gene carrier.
基金the National Natural Science Foundation of China!(No. 29634010-2) Research Institute of BeijingYanshan Petrochemical Corpor
文摘In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.
基金Project supported by the National. Natural Science Foundation of China (Nos. 20474042 and 20574049). Dedicated to Professor Xikui Jiang on the occasion of his 80th birthday.
文摘Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethylenetriamine), CuCl/MA5-DETA (N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy= 2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by ^1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.
基金Financial support from the National Science Foundation (DMR-0090499) and CRP Consortium at Carnegie MellonUniversity is gratefully acknowledged.
文摘The polymerization of n-butyl methacrylate was investigated using the Atom Transfer Radical Polymerization technique with CuBr and CuCl/N,N,N',N',N'-pentamethyldiethylenetriamine catalytic systems. Various combinations of catalyst systems and initiators were utilized in order to optimize the polymerization conditions and to obtain well-defined polymers (i.e. controlled molecular weights and low polydispersities). It has been found that the optimal initiator for this system is a chlorine-based initiator, when the catalyst used is a salt in conjunction with the N,N,N',N',N'- pentamethyldiethylenetriamine ligand. Bromine-based initiators tend to result in large amounts of initial termination, leading to polymers with less than ideal chain end functionality, even if CuCl is used as the species to invoke the halogen exchange. Additionally, the effects of the polymerization temperature, species and the initiator structure were determined.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29774027).
文摘A novel tetrafunctional initiator, C [CH_2O (CH_2)_3 OOCCH(Br)CH_3]_4 (1), was synthesized through the reaction oftetraol with α-bromopropionyl chloride, and then was used as initiator of atom transfer radical polymerization (ATRP) in thepreparation of 4-armed polystyrene (PSt) with narrow polydispersity. The structure, molecular weight and molecular weightdistribution (MWD) of each arm were studied by ~1H-NMR and GPC data of hydrolyzed products of the 4-armed PSt. TheATRP of St using 1/CuBr/bpy as initiator system is of 'living' character based on the following evidence: narrow MWD,constant concentration of chain radical during the polymerization, control of molecular weight by the molar ratio of monomerconsumed to 1. The 4-armed poly(St-b-p-nitrophenyl methacrylate) [poly(St-b-NPMA)] was prepared by the ATRP ofNPMA using 4-armed PSt with terminal bromine as the initiator, and characterized by FT-IR, ~1H-NMR spectra and GPCcurves. The micelles with PSt as core, and PNPMA as shell were formed by dropping DMSO into a solution of 4-armedpoly(St-b-NPMA) in DMF, as proved by laser light scatter (LLS) method.
基金supported by the National Natural Science Foundation of China(21174096,21274100,21234005)the Specialized Research Fund for the Doctoral Program of Higher Education(20123201130001)+2 种基金the Project of Science and Technology Development Planning of Suzhou(ZXG201413,SYG201430)the Project of Science and Technology Development Planning of Jiangsu Province(BK20141192)the Project Fund of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Special research attention has been paid to phosphorus-containing materials and their corresponding applications. This mini review considers recent publications devoted to the "living"/controlled radical(co)polymerization of phosphorus-containing monomers. In addition, different properties of the polymers involved in the phosphonate group in various chemical environments are demonstrated, and their potential applications are briefly discussed.
基金supported by the National Natural Science Foundation of China (20874069, 50803044, 20974071, 20904036)the Specialized Research Fund for the Doctoral Program of Higher Education (200802850005)the Qing Lan Project the Program of Innovative Research Team of Soochow University
文摘This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism study and molecular design in CLRP.The mechanism study in CLRP aided by microwave,initiated by γ-radiation at low temperature,mediated by iron,in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized.The molecular design in CLRP,especially in RAFT polymerization for mechanism study,and in achieving tailor-made functional polymers is studied and discussed in the later part.
文摘The atom transfer radical polymerization on the mechanism of activator generation by electron transfer (AGET ATRP) of methyl methacrylate (MMA) in N,N-dimethylformamide (DMF) in the presence of the catalytic systems, namely, CCl4-FeCl3-1-acetyl-2-phenylhydrazine (APH) and CCl4-FeCl3-ascorbic acid (AA) is reported. The living feature of this process was confirmed by obtaining well-defined polymers with controlled molecular weight, narrow molecular weight distribution, and a chain-extension experiment. Both reducing agents, an APH as well as an AA, possess the equal kinetic activitis.