Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of m...Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.展开更多
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer ce...Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.展开更多
Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also calle...Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017.展开更多
In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error cou...In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts,indicating a learning and memory disorder.After treatment with 30,60,90,120,or 200 mg/kg lithium chloride,the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated,in particular,the 200 mg/kg lithium chloride treatment had the most significant effect.Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta,an inactive form of glycogen synthase kinase 3 beta,in the cerebral cortex and hippocampus of the Fmr1 KO mice.These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice,possibly by inhibiting glycogen synthase kinase 3 beta activity.展开更多
The present study established global brain ischemia using the four-vessel occlusion method. Following three rounds of reperfusion for 30 seconds, and occlusion for 10 seconds, followed by reperfusion for 48 hours, inf...The present study established global brain ischemia using the four-vessel occlusion method. Following three rounds of reperfusion for 30 seconds, and occlusion for 10 seconds, followed by reperfusion for 48 hours, infarct area, the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced. However, glycogen synthase kinase-3β activity, cortical Bax and caspase-3 expression significantly increased, similar to results following ischemic postconditioning. Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity, a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which reduces caspase-3 expression to protect the brain against ischemic injury.展开更多
Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role o...Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.展开更多
1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The p...1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The present study investigated the regulatory effects of nerve growth factor (Akt activator) and lithium chloride (glycogen synthase kinase-3β inhibitor) on the endoplasmic reticulum stress signaling pathway. The results revealed that MPP+ induced expression of Bip and C/EBP homologous protein. The upregulation of Bip and C/EBP homologous protein, as well as the decreased pro-caspase-12 level induced by MPP^+ were inhibited by pretreatment of the nerve growth factor or lithium chloride. These results suggest that the phosphatidylinositol 3 kinase-Aktglycogen synthase kinase-3β pathway is involved in MPP-induced endoplasmic reticulum stress.展开更多
To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was ind...To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.展开更多
Multiple roles of glycogen synthase kinase-3(GSK-3)in neural tissues:GSK-3 is a serine/threonine kinase that has two isoforms encoded by two different genes,GSK-3αand GSK-3β,in mammals.GSK-3 has several sites of ...Multiple roles of glycogen synthase kinase-3(GSK-3)in neural tissues:GSK-3 is a serine/threonine kinase that has two isoforms encoded by two different genes,GSK-3αand GSK-3β,in mammals.GSK-3 has several sites of serine and tyrosine phosphorylation.展开更多
Objective The mangrove tree Xylocarpus granatum J.Koenig(X.granatum)is a medicinal plant used to treat various diseases in several Asian countries.Many bioactive natural products have been isolated from the plants,par...Objective The mangrove tree Xylocarpus granatum J.Koenig(X.granatum)is a medicinal plant used to treat various diseases in several Asian countries.Many bioactive natural products have been isolated from the plants,particularly several groups of limonoids,including 18 xylogranatins(Xyl-A to R),all of which bear a furyl-δ-lactone core commonly found in limonoids.Based on a structural analogy with the limonoids obacunone and gedunin,we hypothesized that xylogranatins could target the enzyme glycogen synthase kinase-3β(GSK-3β),a major target for the treatment of neurodegenerative pathologies,viral infections,and cancers.Methods We investigated the binding of the 18 xylogranatins to GSK-3βusing molecular docking in comparison with two known reference GSK-3βATP-competitive inhibitors,LY2090314 and AR-A014418.For each compound bound to GSK-3β,the empirical energy of interaction(ΔE)was calculated and compared to that obtained with known GSK-3βinhibitors and limonoid triterpenes that target this enzyme.Results Five compounds were identified as potential GSK-3βbinders,Xyl-A,-C,-J,-N,and-O,for which the calculated empiricalΔE was equivalent to that calculated using the best reference molecule AR-A014418.The best ligand is Xyl-C,which is known to have marked anticancer properties.Binding of Xyl-C to the ATP-binding pocket of GSK-3βpositions the furyl-δ-lactone unit deep into the binding-site cavity.Other xylogranatin derivatives bearing a central pyridine ring or a compact polycyclic structure are much less adapted for GSK-3βbinding.Structure-binding relationships are discussed.Conclusion GSK-3βmay contribute to the anticancer effects of X.granatum extract.This study paves the way for the identification of other furyl-δ-lactone-containing limonoids as GSK-3βmodulators.展开更多
Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the u...Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the underlying mechanisms of fibroblast growth factor 13 in Alzheimer’s disease remain unclear.In this study,we established rat models of Alzheimer’s disease by stereotaxic injection of amyloid-β(Aβ_(1-42))-induced into bilateral hippocampus.We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13.The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer’s disease model rats.After overexpression of fibroblast growth factor 13,learning and memory abilities of the Alzheimer’s disease model rats were remarkably improved.Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione,superoxide dismutase,phosphatidylinositol-3-kinase,AKT and glycogen synthase kinase 3β,and anti-apoptotic factor BCL.Furthermore,fibroblast growth factor 13 overexpression decreased the number of apoptotic cells,expression of pro-apoptotic factor BAX,cleaved-caspase 3 and amyloid-βexpression,and levels of tau phosphorylation,malondialdehyde,reactive oxygen species and acetylcholinesterase in the brain of Alzheimer’s disease model rats.The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer’s disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3βsignaling pathway.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimenta...AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimental PVR was induced by intravitreal injection of retinal pigment epithelium(RPE) cells in the eyes of rabbits. A PI3 K/Akt inhibitor(wortmannin) and a GSK3β inhibitor(Li Cl) were also injected at different time during PVR progress. Electroretinogram(ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4 wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and Li Cl were evaluated by ERG and Td Tmediated d UTP nick-end labeling(TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS: Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3 K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3 K/Akt pathways. CONCLUSION: GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3 K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.展开更多
Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mec...Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mechanisms that lead to skeletal muscle atrophy in the elderly. We hold the hypothesis that the innervation of target muscle can be promoted by accelerating axon regeneration and decelerating muscle cell degeneration so as to improve functional recovery of skeletal muscle following peripheral nerve injury. This process may be associated with the Wnt/β-catenin signaling pathway. Our study designed in vitro cell models to simulate myelin regeneration and muscle atrophy. We investigated the effects of SB216763, a glycogen synthase kinase 3 beta inhibitor, on the two major murine cell lines RSC96 and C2C12 derived from Schwann cells and muscle satellite cells. The results showed that SB216763 stimulated the Schwann cell migra- tion and myotube contraction. Quantitative polymerase chain reaction results demonstrated that myelin related genes, myelin associated glycoprotein and cyclin-D1, muscle related gene myogenin and endplate-associated gene nicotinic acetylcholine receptors levels were stimulated by SB216763. Immunocytochemical staining revealed that the expressions of ^-catenin in the RSC96 and C2C12 cytosolic and nuclear compartments were increased in the SB216763-treated cells. These findings confirm that the glycogen synthase kinase 3 beta in- hibitor, SB216763, promoted the myelination and myotube differentiation through the Wnt/β-catenin signaling pathway and contributed to nerve remyelination and reduced denervated muscle atrophy after peripheral nerve injury.展开更多
Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-rela...Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.展开更多
BACKGROUND: Glycogen synthase kinase (GSK)-3β/β-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3β has beneficial effects on I/R injury in the heart...BACKGROUND: Glycogen synthase kinase (GSK)-3β/β-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3β has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3β/β-catenin signaling in hepatic I/R injury. METHODS: Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3β, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3β, GSK-3β activity, axin 2 and the anti- apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. RESULTS: SB216763 increased phospho-GSK-3β levels and suppressed GSK-3β activity (1880±229 vs 3280±272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451±424 vs 7868±845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3β inhibition led to the accumulation of β-catenin in the cytosol (0.40±0.05 vs 1.31±0.11, P<0.05) and nucleus (0.62±0.14 vs 1.73±0.12, P<0.05), β-catenin further upregulated the expression of axin 2. Upregulation of GSK-3β/β-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed thatSB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4±0.2% vs 3.6±0.4%, P<0.05) and enhanced liver proliferation (56±8% vs 19±4%, P<0.05). CONCLUSION: Inhibition of GSK-3β ameliorates hepatic I/R injury through the GSK-3β/β-catenin signaling pathway.展开更多
Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspr...Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.展开更多
Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanism...Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.展开更多
In this study, we studied the effect of glycogen synthase kinase-3 (GSK-3) overactivation on neurofilament phosphorylation in cultured cells. After N2a cells were treated with the specific inhibitor (wortmannin) o...In this study, we studied the effect of glycogen synthase kinase-3 (GSK-3) overactivation on neurofilament phosphorylation in cultured cells. After N2a cells were treated with the specific inhibitor (wortmannin) of phosphomosnol-3 kinase (PI-3K) or treated with wortmannin and the specific inhibitor (LiCl) of glycogen synthase kinase-3 (GSK-3), GSK-3 activity and neurofilament phosphorylation were detected by using GSK-3 activity assay, Western blots and immunofluoresence. Our results showed that after treatment of N2a cells with wortmannin for 1 h, overactivation of GSK-3 caused a reduced staining with antibody SMI32 and an enhanced staining with antibody SMI31. When N2a cells were treated with wortmannin and LiCl, the activity of GSK-3 was reduced substantially. At the same time, the phosphorylation of neurofilament was also reduced. The study demonstrated that overactivation of GSK-3 induced hyperphosphorylation of neurofilament and suggested that in vitro overactivation of GSK-3 resulted in neurofilament hyperphosphorylation and this may be the underlying mechanism for Alzheimer's disease.展开更多
Inhibition ofβ-site amyloid precursor protein-cleaving enzyme 1(BACE1)or glycogen synthase kinase-3β(GSK-3β)is estimated to be the central therapeutic approach for Alzheimer’s disease(AD).In this study,water extra...Inhibition ofβ-site amyloid precursor protein-cleaving enzyme 1(BACE1)or glycogen synthase kinase-3β(GSK-3β)is estimated to be the central therapeutic approach for Alzheimer’s disease(AD).In this study,water extract of Kangenkaryu,its crude drug and chemical composition used in oriental medicine were evaluated regarding their BACE1 and GSK-3βinhibitory activities.Fluorescence resonance energy transfer was used to characterize the BACE1 inhibitory effect of Kangen-karyu,its crude drug and chemical composition.GSK-3βactivity was determined using the Kinase-Glo Luminescent Kinase Assay Platform.The water extract of Kangen-karyu inhibited BACE1 and GSK-3βin concentration-dependent manners when compared with reference drugs,quercetin and luteolin.Among six components of Kangen-karyu,the water extracts of Salviae Miltiorrhizae Radix or Cyperi Rhizoma exhibited significant inhibitory effects on BACE1 and GSK-3β.Among the constituents of Salviae Miltiorrhizae Radix extract,salvianolic acid C,salvianolic acid A,rosmarinic acid,and magnesium lithospermate B significantly inhibited BACE1.In addition,they inhibited GSK-3βwith an IC50 value range of 6.97 to 135.35μM.From these results,one of the effectiveness and its mechanisms of action of Kangen-karyu against AD may be the inhibition of BACE1 and GSK-3β,and one of the active ingredients of Kangen-karyu is Salviae Miltiorrhizae Radix and its constituents.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.92049107 and No.31929002)the Innovative Research Groups of the National Natural Science Foundation of China(No.81721005)the Academic Frontier Youth Team Project to Xiaochuan Wang from Huazhong University of Science and Technology.
文摘Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.
文摘Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.
基金supported by the National Natural Science Foundation of China,Nos.81901994(to BZ)and 81571147(to XXX)the Natural Science Foundation of Hubei Province,China,No.2019CFC847(to WWG)the Fundamental Research Funds for the Central Universities,China,No.2042018kf0149(to ML)
文摘Interleukin-4(IL-4) has a protective effect against cerebral ischemia/reperfusion injury. Animal experiments have shown that IL-4 improves the short-and long-term prognosis of neurological function. The Akt(also called protein kinase B, PKB)/glycogen synthase kinase-3β(Akt/GSK-3β) signaling pathway is involved in oxidative stress, the inflammatory response, apoptosis, and autophagy. However, it is not yet clear whether the Akt/GSK-3β pathway participates in the neuroprotective effect of IL-4 against cerebral ischemia/reperfusion injury. In the present study, we established a cerebral ischemia/reperfusion mouse model by middle cerebral artery occlusion for 60 minutes followed by a 24-hour reperfusion. An IL-4/anti-IL-4 complex(10 μg) was intraperitoneally administered 30 minutes before surgery. We found that administration of IL-4 significantly alleviated the neurological deficits, oxidative stress, cell apoptosis, and autophagy and reduced infarct volume of the mice with cerebral ischemia/reperfusion injury 24 hours after reperfusion. Simultaneously, IL-4 activated Akt/GSK-3β signaling pathway. However, an Akt inhibitor LY294002, which was injected at 15 nmol/kg via the tail vein, attenuated the protective effects of IL-4. These findings indicate that IL-4 has a protective effect on cerebral ischemia/reperfusion injury by mitigating oxidative stress, reducing apoptosis, and inhibiting excessive autophagy, and that this mechanism may be related to activation of the Akt/GSK-3β pathway. This animal study was approved by the Animal Ethics Committee of Renmin Hospital of Wuhan University, China(approval No. WDRY2017-K037) on March 9, 2017.
基金the National Natural Science Foundation of China,No.30870876the Natural Science Foundation of Guangdong Province,No.815101700100005+2 种基金the Science and Technology Program of Guangdong Province,No.2005B60302004,2008B030301371,2009B030801368the Traditional Chinese Medicineand Combination of Traditional Chinese and Western Medicine Program of Guangzhou,No.2008A52the Medical and Health Scientific Research Program of Guangzhou,No.2009-YB-167
文摘In the present study,Fmr1 knockout mice (KO mice) were used as the model for fragile X syndrome.The results of step-through and step-down tests demonstrated that Fmr1 KO mice had shorter latencies and more error counts,indicating a learning and memory disorder.After treatment with 30,60,90,120,or 200 mg/kg lithium chloride,the learning and memory abilities of the Fmr1 KO mice were significantly ameliorated,in particular,the 200 mg/kg lithium chloride treatment had the most significant effect.Western blot analysis showed that lithium chloride significantly enhanced the expression of phosphorylated glycogen synthase kinase 3 beta,an inactive form of glycogen synthase kinase 3 beta,in the cerebral cortex and hippocampus of the Fmr1 KO mice.These results indicated that lithium chloride improved learning and memory in the Fmr1 KO mice,possibly by inhibiting glycogen synthase kinase 3 beta activity.
基金sponsored by the National Natural Science Foundation of China,No.81170768
文摘The present study established global brain ischemia using the four-vessel occlusion method. Following three rounds of reperfusion for 30 seconds, and occlusion for 10 seconds, followed by reperfusion for 48 hours, infarct area, the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced. However, glycogen synthase kinase-3β activity, cortical Bax and caspase-3 expression significantly increased, similar to results following ischemic postconditioning. Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity, a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which reduces caspase-3 expression to protect the brain against ischemic injury.
基金supported by the National Natural Science Foundation of China,No.81471844the Natural Science Foundation of Hubei Province of China,No.2016CFB167the Basic Scientific Research Foundation of Central Universities,No.2042017kf0147
文摘Myocardial ischemia/reperfusion injury can lead to severe brain injury.Glycogen synthase kinase 3 beta is known to be involved in myocardial ischemia/reperfusion injury and diabetes mellitus.However,the precise role of glycogen synthase kinase 3 beta in myocardial ischemia/reperfusion injury-induced brain injury is unclear.In this study,we observed the effects of glycogen synthase kinase 3 beta on brain injury induced by myocardial ischemia/reperfusion injury in diabetic rats.Rat models of diabetes mellitus were generated via intraperitoneal injection of streptozotocin.Models of myocardial ischemia/reperfusion injury were generated by occluding the anterior descending branch of the left coronary artery.Post-conditioning comprised three cycles of ischemia/reperfusion.Immunohistochemical staining and western blot assays demonstrated that after 48 hours of reperfusion,the structure of the brain was seriously damaged in the experimental rats compared with normal controls.Expression of Bax,interleukin-6,interleukin-8,terminal deoxynucleotidyl transferase d UTP nick end labeling,and cleaved caspase-3 in the brain was significantly increased,while expression of Bcl-2,interleukin-10,and phospho-glycogen synthase kinase 3 beta was decreased.Diabetes mellitus can aggravate inflammatory reactions and apoptosis.Ischemic post-conditioning with glycogen synthase kinase 3 beta inhibitor lithium chloride can effectively reverse these changes.Our results showed that myocardial ischemic post-conditioning attenuated myocardial ischemia/reperfusion injury-induced brain injury by activating glycogen synthase kinase 3 beta.According to these results,glycogen synthase kinase 3 beta appears to be an important factor in brain injury induced by myocardial ischemia/reperfusion injury.
基金the National Natural Science Foundation of China, No. 30860085a grant from the Candidates of Young and Middle-Aged Academic Leaders of Yunnan Province, No. 2006PY01-07the Natural Science Foundation of Yunnan Province, No. 2007C177M
文摘1-methyl-4-phenylpyridinium ion (MPP^+) induces endoplasmic reticulum stress and activates caspase-12 in PC12 cells, leading to neuronal apoptosis. However, the underlying molecular mechanism remains unknown. The present study investigated the regulatory effects of nerve growth factor (Akt activator) and lithium chloride (glycogen synthase kinase-3β inhibitor) on the endoplasmic reticulum stress signaling pathway. The results revealed that MPP+ induced expression of Bip and C/EBP homologous protein. The upregulation of Bip and C/EBP homologous protein, as well as the decreased pro-caspase-12 level induced by MPP^+ were inhibited by pretreatment of the nerve growth factor or lithium chloride. These results suggest that the phosphatidylinositol 3 kinase-Aktglycogen synthase kinase-3β pathway is involved in MPP-induced endoplasmic reticulum stress.
基金This project was supported by a grant from National Natural Sciences Foundation of China (No 30672262)
文摘To examine the role of glycogen synthase kinase 3 (GSK-3) in the apoptosis of pancreatic β-cells to better understand the pathogenesis and to find new approach to the treatment of type 2 diabetes, apoptosis was induced by oleic acid (OA) in INS-1 cells and the activity of GSK-3 was inhibited by LiCl. The PI staining and flow cytometry were employed for the evaluation of apoptosis. The phosphorylation level of GSK-3 was detected by Western blotting. The results showed that OA at 0.4 mmol/L could cause conspicuous apoptosis of INS- 1 cells and the activity of GSK-3 was significantly increased. After the treatment with 24 mmolFL of LiCl, a inhibitor of GSK-3, the OA-induced apoptosis of INS-1 cells was lessened and the phosphorylation of GSK-3 was increased remarkably. It is concluded that GSK-3 activation plays an important role in OA-induced apoptosis in pancreatic β-cells and inhibition of the GSK-3 activity can effectively protect INS-1 cells from the OA-induced apoptosis. Our study provides a new experimental basis and target for the clinical treatment of type-2 diabetes.
文摘Multiple roles of glycogen synthase kinase-3(GSK-3)in neural tissues:GSK-3 is a serine/threonine kinase that has two isoforms encoded by two different genes,GSK-3αand GSK-3β,in mammals.GSK-3 has several sites of serine and tyrosine phosphorylation.
文摘Objective The mangrove tree Xylocarpus granatum J.Koenig(X.granatum)is a medicinal plant used to treat various diseases in several Asian countries.Many bioactive natural products have been isolated from the plants,particularly several groups of limonoids,including 18 xylogranatins(Xyl-A to R),all of which bear a furyl-δ-lactone core commonly found in limonoids.Based on a structural analogy with the limonoids obacunone and gedunin,we hypothesized that xylogranatins could target the enzyme glycogen synthase kinase-3β(GSK-3β),a major target for the treatment of neurodegenerative pathologies,viral infections,and cancers.Methods We investigated the binding of the 18 xylogranatins to GSK-3βusing molecular docking in comparison with two known reference GSK-3βATP-competitive inhibitors,LY2090314 and AR-A014418.For each compound bound to GSK-3β,the empirical energy of interaction(ΔE)was calculated and compared to that obtained with known GSK-3βinhibitors and limonoid triterpenes that target this enzyme.Results Five compounds were identified as potential GSK-3βbinders,Xyl-A,-C,-J,-N,and-O,for which the calculated empiricalΔE was equivalent to that calculated using the best reference molecule AR-A014418.The best ligand is Xyl-C,which is known to have marked anticancer properties.Binding of Xyl-C to the ATP-binding pocket of GSK-3βpositions the furyl-δ-lactone unit deep into the binding-site cavity.Other xylogranatin derivatives bearing a central pyridine ring or a compact polycyclic structure are much less adapted for GSK-3βbinding.Structure-binding relationships are discussed.Conclusion GSK-3βmay contribute to the anticancer effects of X.granatum extract.This study paves the way for the identification of other furyl-δ-lactone-containing limonoids as GSK-3βmodulators.
文摘Previous studies have shown that fibroblast growth factor 13 is downregulated in the brain of both Alzheimer’s disease mouse models and patients,and that it plays a vital role in the learning and memory.However,the underlying mechanisms of fibroblast growth factor 13 in Alzheimer’s disease remain unclear.In this study,we established rat models of Alzheimer’s disease by stereotaxic injection of amyloid-β(Aβ_(1-42))-induced into bilateral hippocampus.We also injected lentivirus containing fibroblast growth factor 13 into bilateral hippocampus to overexpress fibroblast growth factor 13.The expression of fibroblast growth factor 13 was downregulated in the brain of the Alzheimer’s disease model rats.After overexpression of fibroblast growth factor 13,learning and memory abilities of the Alzheimer’s disease model rats were remarkably improved.Fibroblast growth factor 13 overexpression increased brain expression levels of oxidative stress-related markers glutathione,superoxide dismutase,phosphatidylinositol-3-kinase,AKT and glycogen synthase kinase 3β,and anti-apoptotic factor BCL.Furthermore,fibroblast growth factor 13 overexpression decreased the number of apoptotic cells,expression of pro-apoptotic factor BAX,cleaved-caspase 3 and amyloid-βexpression,and levels of tau phosphorylation,malondialdehyde,reactive oxygen species and acetylcholinesterase in the brain of Alzheimer’s disease model rats.The changes were reversed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings suggest that overexpression of fibroblast growth factor 13 improved neuronal damage in a rat model of Alzheimer’s disease through activation of the phosphatidylinositol-3-kinase/AKT/glycogen synthase kinase 3βsignaling pathway.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
基金Supported by the National Natural Science Foundation of China(No.81371039)Shanghai Natural Science Foundation(No.18ZR1440200)
文摘AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimental PVR was induced by intravitreal injection of retinal pigment epithelium(RPE) cells in the eyes of rabbits. A PI3 K/Akt inhibitor(wortmannin) and a GSK3β inhibitor(Li Cl) were also injected at different time during PVR progress. Electroretinogram(ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4 wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and Li Cl were evaluated by ERG and Td Tmediated d UTP nick-end labeling(TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS: Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3 K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3 K/Akt pathways. CONCLUSION: GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3 K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition.
基金funded by the National Basic Research Program of China(973 Program),No.2014CB542201the National High Technology Research and Development Program of China(863 Program),No.SS2015AA020501the National Natural Science Foundation of China(General Program),No.31571235,31771322,31671248,31571236,31271284,31171150,81171146,31471144,30971526,31100860,31040043,31371210,and 81372044
文摘Delay of axon regeneration after peripheral nerve injury usually leads to progressive muscle atrophy and poor functional recovery. The Wnt/β-catenin signaling pathway is considered to be one of the main molecular mechanisms that lead to skeletal muscle atrophy in the elderly. We hold the hypothesis that the innervation of target muscle can be promoted by accelerating axon regeneration and decelerating muscle cell degeneration so as to improve functional recovery of skeletal muscle following peripheral nerve injury. This process may be associated with the Wnt/β-catenin signaling pathway. Our study designed in vitro cell models to simulate myelin regeneration and muscle atrophy. We investigated the effects of SB216763, a glycogen synthase kinase 3 beta inhibitor, on the two major murine cell lines RSC96 and C2C12 derived from Schwann cells and muscle satellite cells. The results showed that SB216763 stimulated the Schwann cell migra- tion and myotube contraction. Quantitative polymerase chain reaction results demonstrated that myelin related genes, myelin associated glycoprotein and cyclin-D1, muscle related gene myogenin and endplate-associated gene nicotinic acetylcholine receptors levels were stimulated by SB216763. Immunocytochemical staining revealed that the expressions of ^-catenin in the RSC96 and C2C12 cytosolic and nuclear compartments were increased in the SB216763-treated cells. These findings confirm that the glycogen synthase kinase 3 beta in- hibitor, SB216763, promoted the myelination and myotube differentiation through the Wnt/β-catenin signaling pathway and contributed to nerve remyelination and reduced denervated muscle atrophy after peripheral nerve injury.
基金supported by intramural research funding of National Center for Complementary and Alternative Medicine(now is National Center for Complementary and Integrative Health),NIH,the US Department of Health and Human Services(to X.L.)and an operating grant(MOP 123279)from Canadian Institutes for Health Research(to Z.Y.)
文摘Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.
基金supported by grants from the Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan of China (2008BAI60B02)the Natural Science Foundation of China (30872390)
文摘BACKGROUND: Glycogen synthase kinase (GSK)-3β/β-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3β has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3β/β-catenin signaling in hepatic I/R injury. METHODS: Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3β, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3β, GSK-3β activity, axin 2 and the anti- apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. RESULTS: SB216763 increased phospho-GSK-3β levels and suppressed GSK-3β activity (1880±229 vs 3280±272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451±424 vs 7868±845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3β inhibition led to the accumulation of β-catenin in the cytosol (0.40±0.05 vs 1.31±0.11, P<0.05) and nucleus (0.62±0.14 vs 1.73±0.12, P<0.05), β-catenin further upregulated the expression of axin 2. Upregulation of GSK-3β/β-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed thatSB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4±0.2% vs 3.6±0.4%, P<0.05) and enhanced liver proliferation (56±8% vs 19±4%, P<0.05). CONCLUSION: Inhibition of GSK-3β ameliorates hepatic I/R injury through the GSK-3β/β-catenin signaling pathway.
基金This research was supported by the National Natural Science Foundation of China(31672425)Shaanxi Province Key R&D Program(2018ZDXM-NY-043,2020ZDLNY02–04).
文摘Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.
基金This work was supported by grants from the NSFC Shandong Joint Fund(Grant No.U1606403)the National Natural Science Foundation of China(Grant No.81673450)+4 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.82030074)the NSFC-Shandong Joint Fund(Grant No.U1906212)the Qingdao National Laboratory for Marine Science and Technology(Grant No.2015ASKJ02)the National Science and Technology Major Project for Significant New Drugs Development(Grant No.2018ZX09735-004)the Shandong Provincial Natural Science Foundation(major basic research projects,Grant No.ZR2019ZD18).
文摘Objective:Glycogen synthase kinase-3β(GSK3β)has been recognized as a suppressor of Wnt/β-catenin signaling,which is critical for the stemness maintenance of breast cancer stem cells.However,the regulatory mechanisms of GSK3βprotein expression remain elusive.Methods:Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β,and to characterize the interactions of GSK3β,heat shock protein 90(Hsp90),and co-chaperones.The role of PGK1 in Hsp90 chaperoning GSK3βwas evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α,and by performing a series of binding assays with bacterially purified proteins and clinical specimens.The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays.Results:We showed that GSK3βwas a client protein of Hsp90.Hsp90,which did not directly bind to GSK3β,interacted with phosphoglycerate kinase 1 via its C-terminal domain,thereby facilitating the binding of GSK3βto Hsp90.GSK3β-bound PGK1 interacted with Hsp90 in the“closed”conformation and stabilized GSK3βexpression in an Hsp90 activity-dependent manner.The Hsp90 inhibitor,17-AAG,rather than HDN-1,disrupted the interaction between Hsp90 and PGK1,and reduced GSK3βexpression,resulting in significantly reduced inhibition ofβ-catenin expression,to maintain the stemness of breast cancer stem cells.Conclusions:Our findings identified a novel regulatory mechanism of GSK3βexpression involving metabolic enzyme PGK1-coupled Hsp90,and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3βexpression.
文摘In this study, we studied the effect of glycogen synthase kinase-3 (GSK-3) overactivation on neurofilament phosphorylation in cultured cells. After N2a cells were treated with the specific inhibitor (wortmannin) of phosphomosnol-3 kinase (PI-3K) or treated with wortmannin and the specific inhibitor (LiCl) of glycogen synthase kinase-3 (GSK-3), GSK-3 activity and neurofilament phosphorylation were detected by using GSK-3 activity assay, Western blots and immunofluoresence. Our results showed that after treatment of N2a cells with wortmannin for 1 h, overactivation of GSK-3 caused a reduced staining with antibody SMI32 and an enhanced staining with antibody SMI31. When N2a cells were treated with wortmannin and LiCl, the activity of GSK-3 was reduced substantially. At the same time, the phosphorylation of neurofilament was also reduced. The study demonstrated that overactivation of GSK-3 induced hyperphosphorylation of neurofilament and suggested that in vitro overactivation of GSK-3 resulted in neurofilament hyperphosphorylation and this may be the underlying mechanism for Alzheimer's disease.
文摘Inhibition ofβ-site amyloid precursor protein-cleaving enzyme 1(BACE1)or glycogen synthase kinase-3β(GSK-3β)is estimated to be the central therapeutic approach for Alzheimer’s disease(AD).In this study,water extract of Kangenkaryu,its crude drug and chemical composition used in oriental medicine were evaluated regarding their BACE1 and GSK-3βinhibitory activities.Fluorescence resonance energy transfer was used to characterize the BACE1 inhibitory effect of Kangen-karyu,its crude drug and chemical composition.GSK-3βactivity was determined using the Kinase-Glo Luminescent Kinase Assay Platform.The water extract of Kangen-karyu inhibited BACE1 and GSK-3βin concentration-dependent manners when compared with reference drugs,quercetin and luteolin.Among six components of Kangen-karyu,the water extracts of Salviae Miltiorrhizae Radix or Cyperi Rhizoma exhibited significant inhibitory effects on BACE1 and GSK-3β.Among the constituents of Salviae Miltiorrhizae Radix extract,salvianolic acid C,salvianolic acid A,rosmarinic acid,and magnesium lithospermate B significantly inhibited BACE1.In addition,they inhibited GSK-3βwith an IC50 value range of 6.97 to 135.35μM.From these results,one of the effectiveness and its mechanisms of action of Kangen-karyu against AD may be the inhibition of BACE1 and GSK-3β,and one of the active ingredients of Kangen-karyu is Salviae Miltiorrhizae Radix and its constituents.