The grafting of ethylene glycol dimethacrylate (EGDMA) onto silk in aqueous alcohol systems using potassiumpersulfate (KPS) in the presence of air was investigated. Effects of grafting conditions, such as concentratio...The grafting of ethylene glycol dimethacrylate (EGDMA) onto silk in aqueous alcohol systems using potassiumpersulfate (KPS) in the presence of air was investigated. Effects of grafting conditions, such as concentrations of monomer,initiator and formic acid, temperature and time, on the graft yield were determined. The optimum graft conditions were foundto be: T = 80℃, t = 30 min, [KPS] = 1.85% [on the weight ofmonomer (owm)]; [formic acid] = 0.2% (V/V); [EGDMA] =80% [on the weight of fiber (owf)]. The activation energy of grafting at 50-80℃ was found to be 71.31 kJ/mol for EGDMA.Grafting equations were also evaluated. The graft yield value can be regulated by the concentration of monomer. The graftcopolymerization of EGDMA onto silk is effective in improving the crease-proofing of silk fabrics.展开更多
The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as ...The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support. Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane, recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.展开更多
Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The ...Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The influence of surfactant and costabilizer concentration on nanocapsules size and stability of nanocapsules was investigated. The size and its polydispersity of the nanocapsules were measured by light-scattering particle size analyzer. When the concentration of SDS were increased from 2.5wt% to 10wt%,the size decreases from 340.5 nm to 258.3 nm, PDI decreased from 0.210 to 0.111. As the concentration of HD increased, the size and PDI were both decreased, When reaching 10wt%,the size was 258.0 nm,PDI was 0.130. SDS and HD play important effect in synthesis of Nanocapsules containing TEGDMA.By changing the surfactant and costabilizer concentration it was possible to synthesize a wide variety of nanocapsules sizes. The performance and technical parameters of nanocapsules had been researched preliminarily, which built the solid foundation for the application to the self-repairing bonding resin.展开更多
To improve shrink-proofing performance and hydrophilicity of wool fabrics, the wool fibers were modified by poly(ethylene glycol) dimethacrylate(PEGDMA) through thiol-ene click chemistry reaction. Firstly, wool fabric...To improve shrink-proofing performance and hydrophilicity of wool fabrics, the wool fibers were modified by poly(ethylene glycol) dimethacrylate(PEGDMA) through thiol-ene click chemistry reaction. Firstly, wool fabrics were reduced at room temperature with a high-efficiency disulfide bond reducing agent, tris(2-carbonxyethyl) phosphine hydrochloride(TCEP). Then the thiol-ene click chemistry reaction was initiated by dimethyl 2, 2’-azobis(2-methylpropionate)(AIBME) through the heating method. Fourier transform infrared(FTIR) spectroscopy, Raman spectroscopy, and scanning electron microscopy test results all showed that PEGDMA was successfully grafted onto wool fabric surface. Physical properties, hydrophilicity, and shrink-proofing performance were assessed. The wetting time of PEGDMA grafted wool fabrics decreased to about 3 s. After being grafted with PEGDMA, the felting shrinkage of wool fabrics rapidly decreased to about 8%. The anti-pilling properties of wool fabrics were also greatly improved to 5 class after 2 000 times of friction. Meanwhile, the load retention rate of fabrics could reach 90%. It provides a method of wool modification to improve hydrophilicity and anti-felting performance.展开更多
文摘The grafting of ethylene glycol dimethacrylate (EGDMA) onto silk in aqueous alcohol systems using potassiumpersulfate (KPS) in the presence of air was investigated. Effects of grafting conditions, such as concentrations of monomer,initiator and formic acid, temperature and time, on the graft yield were determined. The optimum graft conditions were foundto be: T = 80℃, t = 30 min, [KPS] = 1.85% [on the weight ofmonomer (owm)]; [formic acid] = 0.2% (V/V); [EGDMA] =80% [on the weight of fiber (owf)]. The activation energy of grafting at 50-80℃ was found to be 71.31 kJ/mol for EGDMA.Grafting equations were also evaluated. The graft yield value can be regulated by the concentration of monomer. The graftcopolymerization of EGDMA onto silk is effective in improving the crease-proofing of silk fabrics.
文摘The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support. Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane, recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.
基金Funded by the National Natural Science Foundation of China (No.30672346)
文摘Nanocapsules with triethylene glycol dimethacrylate (TEGDMA) as core material and polyurethane as wall material used for self-healing bonding resin were prepared by interfacial polycondensation in miniemulsion. The influence of surfactant and costabilizer concentration on nanocapsules size and stability of nanocapsules was investigated. The size and its polydispersity of the nanocapsules were measured by light-scattering particle size analyzer. When the concentration of SDS were increased from 2.5wt% to 10wt%,the size decreases from 340.5 nm to 258.3 nm, PDI decreased from 0.210 to 0.111. As the concentration of HD increased, the size and PDI were both decreased, When reaching 10wt%,the size was 258.0 nm,PDI was 0.130. SDS and HD play important effect in synthesis of Nanocapsules containing TEGDMA.By changing the surfactant and costabilizer concentration it was possible to synthesize a wide variety of nanocapsules sizes. The performance and technical parameters of nanocapsules had been researched preliminarily, which built the solid foundation for the application to the self-repairing bonding resin.
基金National Natural Science Foundation of China (No.31771039)Scientific Research Fund of National Innovation Center of Advanced Dyeing and Finishing Technology,China (No.ZJ2021B03)。
文摘To improve shrink-proofing performance and hydrophilicity of wool fabrics, the wool fibers were modified by poly(ethylene glycol) dimethacrylate(PEGDMA) through thiol-ene click chemistry reaction. Firstly, wool fabrics were reduced at room temperature with a high-efficiency disulfide bond reducing agent, tris(2-carbonxyethyl) phosphine hydrochloride(TCEP). Then the thiol-ene click chemistry reaction was initiated by dimethyl 2, 2’-azobis(2-methylpropionate)(AIBME) through the heating method. Fourier transform infrared(FTIR) spectroscopy, Raman spectroscopy, and scanning electron microscopy test results all showed that PEGDMA was successfully grafted onto wool fabric surface. Physical properties, hydrophilicity, and shrink-proofing performance were assessed. The wetting time of PEGDMA grafted wool fabrics decreased to about 3 s. After being grafted with PEGDMA, the felting shrinkage of wool fabrics rapidly decreased to about 8%. The anti-pilling properties of wool fabrics were also greatly improved to 5 class after 2 000 times of friction. Meanwhile, the load retention rate of fabrics could reach 90%. It provides a method of wool modification to improve hydrophilicity and anti-felting performance.