The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds.The peripheral coding of taste has been thoroughly studied in many insect species,but t...The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds.The peripheral coding of taste has been thoroughly studied in many insect species,but the central gustatory pathways are poorly described.In the present study,we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique.We identified different types of neurons,including sensory neurons,interneurons,and motor neurons.The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion.The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion.We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H.armigera larvae.展开更多
基金This work was supported by the National Natural Science Foundation of China(31861133019,31672367)the Program for Science and Technology Innovation Talents in University of Henan Province(19HASTIT011)the Key Scientific and Technological Project of Henan Province of China(202102110072).
文摘The sense of taste plays a crucial role in herbivorous insects by discriminating nutrients from complex plant metabolic compounds.The peripheral coding of taste has been thoroughly studied in many insect species,but the central gustatory pathways are poorly described.In the present study,we characterized single neurons in the gnathal ganglion of Helicoverpa armigera larvae using the intracellular recording/staining technique.We identified different types of neurons,including sensory neurons,interneurons,and motor neurons.The morphologies of these neurons were largely diverse and their arborizations seemingly covered the whole gnathal ganglion.The representation of the single neurons responding to the relevant stimuli of sweet and bitter cues showed no distinct patterns in the gnathal ganglion.We postulate that taste signals may be processed in a manner consistent with the principle of population coding in the gnathal ganglion of H.armigera larvae.